Джон Дербишир

«Простая одержимость». Главы из книги

Вступление
Глава 1. Карточный фокус
Глава 2. Почва и всходы

Вступление

В августе 1859 года Бернхард Риман стал членом-корреспондентом Берлинской академии наук; это была большая честь для тридцатидвухлетнего математика. В согласии с традицией Риман по такому случаю представил академии работу по теме исследований, которыми он был в то время занят. Она называлась «О числе простых чисел, не превышающих данной величины». В ней Риман исследовал простой вопрос из области обычной арифметики. Чтобы понять этот вопрос, сначала выясним, сколько имеется простых чисел, не превышающих 20. Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих тысячи? Миллиона? Миллиарда? Существует ли общий закон или общая формула, которые избавили бы нас от прямого пересчета?

Риман взялся за эту проблему, используя самый развитый математический аппарат своего времени — средства, которые даже сегодня изучаются только в продвинутых институтских курсах; кроме того, он для своих нужд изобрел математический объект, сочетающий в себе мощь и изящество одновременно. В конце первой трети своей статьи он высказывает некоторую догадку относительно этого объекта, а далее замечает:

«Хотелось бы, конечно, иметь строгое доказательство этого факта, но после нескольких недолгих бесплодных попыток я отложил поиск такого доказательства, поскольку этого не требуется для непосредственных целей моего исследования».

Эта высказанная по случаю догадка оставалась почти незамеченной в течение десятилетий. Но затем, по причинам, которые я поставил себе целью описать в данной книге, она постепенно завладела воображением математиков, пока не достигла статуса одержимости, непреодолимой навязчивой идеи.

Гипотеза Римана, как стали называть эту догадку, оставалась навязчивой идеей в течение всего XX столетия и остается таковой по сей день, отразив к настоящему моменту все без исключения попытки доказать ее или опровергнуть. Эта одержимость Гипотезой Римана стала сильна как никогда после того, как в последние годы были успешно решены другие великие проблемы, долгое время остававшиеся открытыми: Теорема о четырех красках (сформулирована в 1852 году, решена в 1976), Последняя теорема Ферма (сформулирована, по-видимому, в 1637 году, доказана в 1994), а также многие другие, менее известные за пределами мира профессиональных математиков. Гипотеза Римана сегодня — это гигантский Белый Кит математических колоды исследований.

Гипотеза Римана поглощала внимание математиков в течение всего XX века. Вот что говорил Давид Гильберт, один из виднейших математических умов своего времени, обращаясь ко второму международному конгрессу математиков:

«В теории распределения простых чисел в последнее время Адамаром, де ля Валле Пуссеном, фон Мангольдтом и другими сделаны существенные сдвиги. Но для полного решения проблемы, поставленной в исследовании Римана «О числе простых чисел, не превышающих данной величины», необходимо прежде всего доказать справедливость исключительно важного утверждения Римана <...>».

Далее Гильберт приводит формулировку Гипотезы Римана. А вот как сто лет спустя высказался Филип А. Гриффитс, директор Института высших исследований в Принстоне, а ранее — профессор математики в Гарвардском университете. В своей статье, озаглавленной «Вызовы исследователям XXI века», в январском номере Journal of the American Mathematical Society за 2000 год он пишет:

«Несмотря на колоссальные достижения XX века, десятки выдающихся проблем все еще ожидают своего решения. Наверное, большинство из нас согласится, что следующие три проблемы относятся к числу наиболее вызывающих и интересных.
Первой из них является Гипотеза Римана, которая дразнит математиков уже 150 лет <...>».

Интересным явлением в Соединенных Штатах в последние годы XX века стало появление частных математических исследовательских институтов, финансируемых богатыми любителями математики. И Математический институт Клея (основанный в 1998 году бостонским финансистом Лэндоном Т. Клеем), и Американский математический институт (основан в 1994 году калифорнийским предпринимателем Джоном Фраем) ориентировали свои исследования на Гипотезу Римана. Институт Клея установил премию в миллион долларов за ее доказательство или опровержение. Американский математический институт обращался к Гипотезе на трех полномасштабных конференциях (в 1996, 1998 и 2000 годах), собравших исследователей со всего мира. Помогут ли эти новые подходы и инициативы в конце концов победить Гипотезу Римана, пока не ясно.

В отличие от Теоремы о четырех красках или Последней теоремы Ферма Гипотезу Римана нелегко сформулировать так, чтобы сделать ее понятной для нематематика, потому что она составляет самую суть одной трудной для понимания математической теории. Вот как она звучит:

Гипотеза Римана
Все нетривиальные нули дзета-функции
имеют вещественную часть, равную одной второй.

Для обычного читателя, даже хорошо образованного, но без продвинутой математической подготовки, это, вероятно, полная бессмыслица. С равным успехом можно было бы сформулировать Гипотезу на церковнославянском. В данной книге параллельно с описанием истории Гипотезы и ряда людей, имевших к ней отношение, я попытался довести этот глубокий и таинственный вывод до уровня, доступного широкому читателю, сообщая при этом ровно столько математических сведений, сколько необходимо для понимания Гипотезы.


*   *   *

План книги очень простой. Главы с нечетными номерами (сначала они планировались как главы с простыми номерами, но я подумал, что не стоит казаться слишком умным) содержат математические объяснения, подводя читателя — надеюсь, плавно — к пониманию Гипотезы Римана и к осознанию ее важности. В главах с четными номерами раскрываются исторические и биографические подробности.

Изначально я собирался сделать эти две нити повествования независимыми, так чтобы читатели, недолюбливающие формулы, могли наслаждаться только четными главами, а читатели, которых не слишком интересуют история и байки про математиков, могли спокойно читать нечетные. Реализовать этот план мне удалось не в полной мере, и я теперь сомневаюсь, что со столь запутанным предметом это вообще возможно. Тем не менее в своей основе планировавшееся разбиение сохранилось. Математики намного больше в нечетных главах и намного меньше в четных, и читатель волен, разумеется, попытаться следовать при чтении той или иной линии. Правда, я все же надеюсь, что вы прочтете книгу целиком.

Книга предназначена для понятливого и любознательного читателя-нематематика. Такое утверждение, конечно, вызывает целый ряд вопросов. Что имеется в виду под «нематематиком»? Какой уровень математических знаний предполагается у читателя? Ну, начнем с того, что каждый хоть что-то знает из математики. Наиболее образованные люди могут, вероятно, иметь смутное представление о том, что такое математический анализ. Я думаю, что мне удалось написать книгу, отвечающую уровню тех читателей, кто был в терпимых отношениях со школьной математикой и, возможно, прослушал пару институтских курсов по математике. Первоначально я собирался объяснить Гипотезу Римана вообще без использования математического анализа. Такая постановка задачи оказалась немного слишком оптимистичной; в результате набрались три главы, содержащие (в очень ограниченном объеме) самый элементарный анализ, причем все необходимое объясняется по ходу дела.

Практически все остальное — это просто арифметика и элементарная алгебра: раскрытие скобок в выражениях типа (a + b) × (c + d) или преобразования уравнений, позволяющие превратить S = 1 + xS в S = 1/(1 – x). Еще потребуется готовность читателя принять кое-какие сокращенные обозначения, позволяющие пощадить мускулы кисти руки при переписывании математических выражений. Я могу утверждать по крайней мере следующее: я не думаю, что Гипотезу Римана можно объяснить, используя математику более элементарную, чем та, что излагается в этой книге; поэтому если, закончив чтение, вы так и не будете понимать, в чем состоит Гипотеза, то можете быть уверены, что вы этого никогда не поймете.


*   *   *

Многие профессиональные математики и историки математики великодушно откликнулись на мои просьбы о помощи. Я глубоко благодарен целому ряду людей, добровольно уделивших мне время, за данные мне советы (которым я не всегда следовал), за их терпение, когда им приходилось отвечать на одни и те же тупые вопросы, а одному из них я особенно благодарен за оказанное мне гостеприимство. Вот эти люди: Джерри Александерсон, Том Апостол, Мэтт Брин, Брайан Конри, Хэролд Эдвардс, Деннис Хеджхал, Артур Джаффе, Патрисио Лебеф, Стивен Миллер, Хью Монтгомери, Эрвин Нейеншвандер, Эндрю Одлыжко, Сэмюэль Паттерсон, Питер Сарнак, Манфред Шредер, Ульрике Форхауер, Матти Вуоринен и Майк Вестморланд. За все серьезные ошибки в книге несу ответственность я, а не они. Бригитт Брюггеман и Херберт Айтенайер помогли мне восполнить пробелы в немецком. Заказы на статьи от моих друзей из National Review, The New Criterion и The Washington Times позволяли кормить моих детей, пока я работал над книгой. Многочисленные читатели моих онлайновых колонок помогли мне осознать, какие именно математические идеи представляют наибольшую трудность для понимания нематематиками.

Вместе с благодарностями приходится принести и примерно такое же количество извинений. Книга посвящена предмету, который целый ряд лучших умов человечества интенсивно исследует на протяжении сотни лет. В рамках отведенного объема и в соответствии с выбранным методом изложения пришлось выкинуть целые области исследований, связанных с Гипотезой Римана. В книге вы не найдете ни слова ни о гипотезе плотности, ни о приближенном функциональном уравнении, ни даже о целом захватывающем направлении, лишь недавно пробудившемся к активной жизни после долгой спячки, — исследовании моментов дзета-функции. Не будут также упомянуты обобщенная гипотеза Римана, модифицированная обобщенная гипотеза Римана, расширенная гипотеза Римана, большая гипотеза Римана, модифицированная большая гипотеза Римана и квазириманова гипотеза.

Еще огорчительнее, что в моей книге не встретится имен многих ученых, которые десятилетиями трудятся на этом поприще, не покладая рук. Это Энрико Бомбьери, Амит Гош, Стив Гонек, Хенрик Иванек (в половине приходящей к нему электронной корреспонденции указан адресат «Хенри К. Иванек»), Нина Снейт и многие другие. Я приношу им свои искренние извинения. Когда работа начиналась, я и не подозревал, какой груз взваливаю на свои плечи. Эта книга с легкостью могла оказаться в три или в тридцать раз длиннее, но мой редактор уже шарил под столом в поисках бензопилы.

И еще одна благодарность. Я придерживаюсь того суеверия, что всякая книга, выходящая за рамки ремесла, — другими словами, всякая книга, написанная с тщанием и любовью, — имеет своего духа-хранителя. Этим я просто хочу сказать, что за всякой книгой стоит определенный конкретный человек, образ которого не покидает мысли автора во время работы и личность которого добавляет красок его страницам. (В художественной литературе, боюсь, таким человеком слишком часто оказывается сам автор.)

Дух-хранитель этой книги, чей взгляд через плечо я, казалось, временами ловил, пока писал, чье легкое покашливание в соседней комнате я иногда слышал в своем воображении и кто неслышно действует за сценой и в математических, и в исторических главах, — это Бернхард Риман. Чтение того, что написано им, и того, что написано о нем, вызвало во мне смешанные чувства по отношению к этому человеку: глубокое сочувствие к его неприспособленности к жизни в обществе, подорванному здоровью, выпавшим на его долю тяжелым утратам и хронической бедности смешано с благоговением перед невероятной мощью его ума и силой его сердца.

Книгу следует посвятить кому-то из живущих, чтобы посвящение могло доставить удовольствие. Я посвятил эту книгу своей жене, которая совершенно точно знает, насколько это посвящение искренне. Но в определенном смысле, и это нельзя обойти молчанием в предисловии, эта книга принадлежит Бернхарду Риману, который за свою короткую жизнь, омраченную многими горестями, оставил людям столь много имеющего непреходящую ценность — включая и задачу, которая продолжает манить их через полторы сотни лет после того, как он с типичной для себя застенчивостью упомянул о своих «недолгих бесплодных попытках» ее решить.

Джон Дербишир

Хантингтон, Лонг-Айленд
Июнь 2002 г.

Глава 1. Карточный фокус


I. Как и многие другие представления, это начинается с колоды карт.

Возьмем обычную колоду из 52 карт; положим ее на стол, подровняв со всех сторон. А теперь сдвинем самую верхнюю карту колоды, не пошевелив при этом ни одну из остальных карт. Насколько можно сдвинуть верхнюю карту, чтобы она еще не упала?

Ответ понятен: на половину длины карты, что мы и видим на рисунке 1.1. Если подвинуть ее так, чтобы на весу оказалось более половины карты, она упадет. Точка опрокидывания находится в центре тяжести карты, т. е. на середине ее длины.

Простая одержимость

Рисунок 1.1

Теперь сделаем кое-что еще. Пусть верхняя карта так и лежит, сдвинутая на половину своей длины — т. е. с максимальным нависанием, — а мы начнем осторожно сдвигать следующую карту. Насколько в сумме могут нависать две верхние карты?

Фокус состоит в том, что эти две карты надо рассматривать как единое целое. Где у этого целого находится центр тяжести? Ясно, что посередине общей длины — длины в полторы карты. Значит, центр тяжести расположен на расстоянии в три четверти длины карты от выступающего края верхней карты (см. рисунок 1.2). Суммарное нависание, следовательно, равно трем четвертям длины карты. Заметим, что верхняя карта по-прежнему свисает со второй на половину своей длины. Но две верхние карты мы сдвигали как единое целое.

Простая одержимость

Рисунок 1.2

Если теперь начать двигать третью карту и посмотреть, насколько можно увеличить нависание, окажется, что ее можно сдвинуть на одну шестую длины карты. Как и ранее, надо воспринимать три верхние карты как единое целое. Центр тяжести тогда расположен на расстоянии в одну шестую длины карты от выдвинутого края третьей карты (см. рисунок 1.3).

Простая одержимость

Рисунок 1.3

За край у нас выдвинута одна шестая третьей карты, одна шестая плюс одна четверть второй карты, а также одна шестая плюс одна четверть плюс одна вторая верхней карты, что в сумме дает полторы карты:

Простая одержимость

Это половина от длины трех карт; вторая половина находится за точкой опрокидывания. На рисунке 1.4 изображено, что у нас получилось после максимально возможного сдвига третьей карты.

Простая одержимость

Рисунок 1.4

Полное нависание теперь составляет одну вторую (за счет верхней карты) плюс одна четверть (за счет второй карты) плюс одна шестая (за счет третьей). Всего — одиннадцать двенадцатых длины карты. Потрясающе!

Можно ли добиться нависания, превышающего длину одной карты? Да, можно. Прямо следующая карта — четвертая сверху — при осторожном сдвигании добавит к нависанию одну восьмую длины карты. Я не буду проделывать все эти арифметические выкладки — или поверьте мне, или сделайте их сами, подобно тому как мы это только что сделали для трех первых карт. Вот чему равно полное нависание с четырьмя картами: одна вторая плюс одна четверть плюс одна шестая плюс одна восьмая — все вместе одна и одна двадцать четвертая длины карты (см. рисунок 1.5).

Простая одержимость

Рисунок 1.5

Если продолжать действовать в том же духе и целиком использовать всю колоду, то за счет пятидесяти одной карты накопится нависание, равное

Простая одержимость

(самую нижнюю карту сдвигать бессмысленно). Такая сумма на самую толику меньше, чем 2,25940659073334. Таким образом, мы добились полного нависания более чем в две с четвертью длины! (Рис. 1.6.)

Простая одержимость

Рисунок 1.6

Я был студентом, когда узнал про это. Дело было в летние каникулы, и я занимался подготовкой к следующему семестру, пытаясь несколько опередить программу. Свой вклад в оплату обучения я вносил, нанимаясь на время каникул рабочим на стройки — в Англии в те времена профсоюзы не сильно контролировали этот сектор. На следующий день после того, как я узнал про фокус с картами, мне предстояло в одиночку прибраться во внутренней части строящегося здания, где пачками хранились сотни больших квадратных потолочных панелей. Часа два я с забавлялся со стопкой из 52 панелей, пытаясь добиться нависания в две с четвертью панели. Проходивший мимо прораб застал меня глубоко погруженным в созерцание гигантской колышущейся башни, составленной из потолочных панелей, и он, я думаю, утвердился в своих худших подозрениях относительно целесообразности найма студентов.

II. Есть одна вещь, которую очень любят делать математики и которая оказывается очень плодотворной, — это экстраполировать, т. е. брать конкретную задачу и распространять ее выводы на более широкую область.

В нашей конкретной задаче у нас было 52 карты. Оказалось, что полное нависание составило более чем две с четвертью карты.

Но почему 52 карты? А если бы было больше? Сотня? Миллион? Триллион? А предположим, что у нас имелся бы неограниченный запас карт — какого максимального нависания мы смогли бы тогда добиться?

Сначала взглянем на нашу постепенно растущую формулу. При 52 картах полное нависание составило

Простая одержимость

Поскольку все знаменатели здесь четные, можно вынести одну вторую за скобки и переписать в виде

Простая одержимость

Если бы у нас была сотня карт, то полное нависание составляло бы

Простая одержимость

Имея в распоряжении триллион карт, мы добились бы нависания величиной в

Простая одержимость

Чтобы посчитать такое, требуется проделать немало арифметических действий, но у математиков есть способы спрямлять подобные вычисления, и я могу твердо заверить вас, что полное нависание в случае сотни карт будет лишь чуточку меньше, чем 2;58868875882, а для триллиона карт — на самую толику меньше, чем 14,10411839041479.

Полученные числа удивительны вдвойне. Во-первых, тем, что вообще удается добиться нависания в 14 с лишним карточных длин, пусть даже для этого понадобится триллион карт. Четырнадцать карточных длин — это более четырех футов, если брать стандартные игральные карты. А во-вторых, если об этом подумать, тем, что числа оказываются именно такими, а не большими. При переходе от 52 к 100 картам мы заработали дополнительное нависание лишь в одну треть длины карты (даже чуть-чуть меньше, чем в одну треть). А затем переход к триллиону — а колода в триллион стандартных игральных карт будет иметь такую толщину, что покроет большую часть расстояния до Луны, — принес нам всего лишь одиннадцать с половиной карточных длин.

Ну а если бы число карт у нас было неограниченным? Какого максимального нависания мы могли бы достичь? Замечательный ответ на этот вопрос состоит в том, что максимального нависания просто нет. Если в запасе имеется достаточное число карт, можно сделать нависание сколь угодно большим. Желаете получить нависание в 100 карточных длин? Пожалуйста, возьмите что-то около 405 709 150 012 598 триллионов триллионов триллионов триллионов триллионов триллионов карт — колоду, высота которой намного превысит размеры известной нам части Вселенной. А можно сделать и большее нависание, и еще большее — настолько большое, насколько захотите, если только у вас есть желание иметь дело с невообразимо большим числом карт. Нависание в миллион карт? Пожалуйста, но, правда, количество необходимых для этого карт будет таким большим, что только для записи этого числа понадобится нормального размера книга — в этом числе будет 868 589 цифр.

III. Теперь нам предстоит сосредоточить свое внимание на выражении в скобках, а именно

Простая одержимость

Математики говорят, что это — ряд; ряд означает неограниченно продолжающееся суммирование членов, каждый из которых задается некоторым общим законом. В нашем случае члены ряда Простая одержимость — это обратные величины к обычным натуральным числам 1, 2, 3, 4, 5, 6, 7, ... .

Ряд Простая одержимость играет в математике достаточно важную роль, чтобы иметь собственное название. Он называется гармоническим рядом.

Подведем промежуточный итог. Складывая достаточно большое число членов гармонического ряда, можно получить сколь угодно большой результат. У этой суммы нет предела.

Грубый, но распространенный и доходчивый способ выразить то же самое — это сказать, что гармонический ряд суммируется к бесконечности:

Простая одержимость

Хорошо воспитанных математиков учат морщиться при виде таких выражений; но я думаю, что с ними вполне можно иметь дело, если знать опасности, которые вас тут подстерегают. Леонард Эйлер, один из величайших математиков всех времен, использовал подобные выражения постоянно и весьма плодотворно. Но все же правильный, профессиональный математический термин, описывающий то, что здесь происходит, звучит так: гармонический ряд расходится.

Сказать-то я это сказал, но смогу ли я это доказать? Всем известно, что в математике каждый результат надо строго логически доказывать. Результат у нас такой: гармонический ряд расходится. Как его доказать?

Доказательство оказывается довольно простым и опирается только на самую элементарную арифметику. В Средние века его нашел французский ученый Никола Орем (ок. 1323–1382)1 . Орем заметил, что сумма Простая одержимость больше чем Простая одержимость ; равным образом и Простая одержимость Простая одержимость также больше чем Простая одержимость; то же верно и для суммы Простая одержимость Простая одержимость и т. д. Другими словами, будем брать сначала 2, потом 4, потом 8, потом 16 и т. д. членов гармонического ряда и группировать их вместе; получится бесконечное число таких групп, каждая из которых в сумме превосходит одну вторую. Полная сумма, следовательно, должна быть бесконечной. Не стоит переживать из-за того, что размеры этих групп растут очень быстро: «в бесконечности» полно места, и неважно, сколько групп мы уже образовали, следующая все равно окажется на своем месте и к нашим услугам. Всегда есть возможность добавить еще одну Простая одержимость, а это и означает, что сумма растет неограниченно.

Данное Оремом доказательство расходимости гармонического ряда, по-видимому, пролежало невостребованным в течение нескольких столетий. Пьетро Менголи передоказал этот же результат в 1647 году с помощью другого метода. Сорок лет спустя Иоганн Бернулли дал доказательство еще одним, третьим, способом, а вскоре после того старший брат Иоганна Якоб предложил четвертый способ. Судя по всему, ни Менголи, ни братья Бернулли не знали о найденном в XIV веке доказательстве Николa Орема — одном из хорошо забытых шедевров средневековой математики. Тем не менее доказательство Орема остается наиболее прямым и изящным среди всех доказательств, и его, как правило, и приводят в современных учебниках.

IV. В рядах изумляет не то, что некоторые из них расходятся, а то, что так делают не все ряды. Когда мы складываем бесконечное число слагаемых, разве мы не вправе ожидать, что и ответ будет бесконечен? То, что это не всегда так, легко проиллюстрировать.

Возьмем линейку, на которой делениями отмечены четверти, восьмые, шестнадцатые и т. д. (чем дальше, тем лучше — я изобразил линейку, на которой отмечены доли в одну шестьдесят четвертую). Поставим остро заточенный карандаш у самого первого деления на линейке — нуля. Подвинем карандаш на один дюйм вправо. Теперь карандаш указывает на деление, обозначающее один дюйм, а переместили карандаш мы также на один дюйм (рис. 1.7).

Простая одержимость

Рисунок 1.7

Вслед за тем сдвинем карандаш вправо еще на полдюйма (рис. 1.8).

Простая одержимость

Рисунок 1.8

Далее сдвинем еще на четверть дюйма вправо, потом на восьмую часть дюйма, потом на шестнадцатую, на тридцать вторую и на шестьдесят четвертую. Где теперь находится карандаш, видно на рисунке 1.9.

Простая одержимость

Рисунок 1.9

А полное расстояние, на которое переместился карандаш, равно

Простая одержимость

что, как нетрудно посчитать, составляет Простая одержимость. Понятно, что если продолжать в том же духе, то мы всякий раз будем оказываться все ближе и ближе к двухдюймовой отметке. Точно на нее мы никогда не попадем, но нет предела тому, насколько близко к ней можно подобраться. Можно приблизиться менее чем на миллионную долю дюйма, можно на триллионную; или на триллион триллион триллион триллион триллион триллион триллион триллион триллионную. Этот факт выражается таким образом:

Простая одержимость

Здесь имеется в виду, что слева от знака равенства выполняется суммирование бесконечного числа членов.

Важно осознать разницу между гармоническим рядом и этим новым рядом. В случае гармонического ряда сложение бесконечного числа слагаемых дало бесконечный результат. Здесь же сложение бесконечного числа слагаемых дает ответ 2. Гармонический ряд расходится. Наш новый ряд сходится.

В гармоническом ряде есть свое очарование, и он имеет прямое отношение к главной теме данной книги — Гипотезе Римана. Но вообще-то математиков больше интересуют сходящиеся ряды, нежели расходящиеся.

V. Предположим теперь, что вместо того, чтобы передвигаться направо на один дюйм, потом на полдюйма, потом на четверть дюйма и т. д., мы будем менять направление: дюйм вправо, полдюйма влево, четверть дюйма вправо, одна восьмая дюйма влево... После семи шагов мы попадем в точку, показанную на рисунке 1.10.

Простая одержимость

Рисунок 1.10

С математической точки зрения сдвиг налево означает сдвиг направо на отрицательную величину, и поэтому наши передвижения выражаются такой суммой:

Простая одержимость

что на самом деле равно Простая одержимость. В действительности несложно доказать — и мы это сделаем в одной из последующих глав, — что если продолжать прибавлять и вычитать до бесконечности, то результат будет таким:

Простая одержимость

VI. Теперь представим себе, что вместо линейки с делениями, обозначающими половины, четверти, восьмые, шестнадцатые и т. д. доли дюйма, в руках у нас линейка с делениями в третьи, девятые, двадцать седьмые, восемьдесят первые и т. д. доли. Другими словами, вместо половинок, половин от половин, половин от половин от половин... у нас нанесены трети, трети от третей, трети от третей от третей и т. д. Будем теперь упражняться в том же, что и раньше, — переносить карандаш сначала на дюйм, потом на треть дюйма, потом на одну девятую, потом на одну двадцать седьмую (рис. 1.11).

Простая одержимость

Рисунок 1.11

Совсем несложно убедиться, что если продолжать такую операцию до бесконечности, то получится полная сумма в Простая одержимость дюйма. Другими словами,

Простая одержимость

А можно, конечно, и на нашей новой линейке менять направление движения: направо на дюйм, налево на треть, направо на одну девятую, налево на одну двадцать седьмую и т. д. (рис. 1.12).

Простая одержимость

Рисунок 1.12

Соответствующая арифметика, возможно, не так уж прозрачна, но, как бы то ни было, результат имеет вид

Простая одержимость

Итак, у нас имеются четыре сходящихся ряда: первый (1.1) подкрадывается слева все ближе и ближе к 2, второй (1.2) приближается к Простая одержимость попеременно то слева, то справа, третий (1.3) подбирается слева все ближе и ближе к Простая одержимость, а четвертый (1.4) приближается к Простая одержимость попеременно то слева, то справа. А перед этим мы познакомились с одним расходящимся рядом — гармоническим.

VII. При чтении математической литературы полезно знать, в какой области математики вы находитесь — какую часть из этого обширного предмета изучаете. Та область, где обитают бесконечные ряды, в математике называется анализом2 . Обычно считается, что анализ занимается изучением бесконечного, т. е. бесконечно большого и бесконечно малого (инфинитезимального). Когда Леонард Эйлер — о котором будет много всего сказано ниже — в 1748 году опубликовал свой превосходный первый учебник по анализу, он назвал его просто Introductio in analysin infinitorum — «Введение в анализ бесконечного».

Однако понятия бесконечного и инфинитезимального привели в начале XIX века к возникновению серьезных проблем в математике и в конце концов были полностью сметены с дороги в ходе большой реформы математики. В современный анализ эти концепции не допускаются. Но они застряли в словарном запасе математиков, и в этой книге я нередко буду использовать слово «бесконечность». Надо только помнить, что оно представляет собой просто удобное и выразительное сокращение для более строгих понятий. Каждое математическое утверждение, где присутствует слово «бесконечность», можно переформулировать, не используя этого слова.

Когда мы говорим, что сумма гармонического ряда равна бесконечности, на самом деле имеется в виду, что если задаться сколь угодно большим числом S, то сумма гармонического ряда3 рано или поздно превысит S. Видите? Никаких «бесконечностей». Во второй трети XIX века анализ был целиком переписан на языке подобного рода. Если какое-то выражение нельзя переписать таким образом, то оно не допускается в современную математику. Далекие от математики люди иногда меня спрашивают: «Раз вы знаете математику, ответьте на вопрос, который меня всегда занимал: сколько будет бесконечность разделить на бесконечность?» На это я могу ответить только: «Вы произносите слова, которые не имеют никакого смысла. Это не математическая фраза. Вы говорите о «бесконечности» так, как если бы это было число. Но это не число. С таким же успехом вы могли бы спросить «Сколько будет истина разделить на красоту?» Я ничего не могу по этому поводу сказать. Я умею делить только числа, а «бесконечность», «истина», «красота» — это не числа».

Каково же тогда современное определение анализа? Для наших целей, как мне кажется, подойдет такое определение: это изучение пределов. Понятие предела лежит в основе анализа. Например, все дифференциальное и интегральное исчисление, составляющее наиболее значительную часть анализа, основано на понятии предела.

Рассмотрим такую числовую последовательность: Простая одержимость  Простая одержимость . Каждая следующая дробь получена из предыдущей по простому правилу: новый знаменатель равен сумме старого числителя и старого знаменателя, а новый числитель равен сумме старого числителя и удвоенного старого знаменателя. Эта последовательность сходится к квадратному корню из числа 2. Например, возведение в квадрат числа Простая одержимость дает Простая одержимость , что равно 2,000000176838287... Говорят, что предел этой последовательности равен Простая одержимость.

Рассмотрим еще один пример последовательности: Простая одержимость Простая одержимость . Здесь N-й член последовательности получается так: если N четно, то умножаем предыдущий член на Простая одержимость, а если N нечетно, то умножаем предыдущий член на Простая одержимость. Такая последовательность сходится к числу π. Последняя из приведенных дробей равна 2,972154...(данная последовательность сходится очень медленно4 ). А вот еще пример: Простая одержимость Простая одержимость — эта последовательность сходится к числу, которое примерно равно 2,718281828459. Это необычайно важное число, и мы будем использовать его в дальнейшем.

Стоит заметить, что приведенные только что примеры — это примеры последовательностей, т. е. наборов чисел, записанных через запятую. Это не ряды, члены которых надо складывать. Но с точки зрения анализа ряд — это все-таки слегка замаскированная последовательность. Утверждение «ряд Простая одержимость сходится к 2» математически эквивалентно такому утверждению: «последовательность Простая одержимость сходится к 2». Четвертый член этой последовательности представляет собой сумму первых четырех членов ряда и т. д. (Название последовательности такого типа на математическом языке — последовательность частичных сумм данного ряда.) Аналогично, утверждение «гармонический ряд расходится» эквивалентно утверждению «последовательность Простая одержимость расходится». В этой последовательности N-й член равен предыдущему плюс Простая одержимость.

Все это относится к анализу, т. е. к изучению пределов — того, как именно числовая последовательность может приближаться к некоторому предельному числу, никогда точно его не достигая. Когда говорится, что последовательность продолжается неограниченно, имеется в виду, что, сколько бы членов мы уже ни выписали, всегда можно написать следующий. Когда говорится, что последовательность имеет предел, равный a, имеется в виду, что, какое бы малое число x мы ни взяли, начиная с некоторого момента каждый член последовательности будет отличаться от a на величину, меньшую, чем выбранное x. А если вы предпочитаете говорить «Последовательность стремится к бесконечности» или «Предел N-го члена при N, стремящемся к бесконечности, есть a», то вы вправе так выражаться, если вы сами осознаете, что это просто удобная фигура речи.

VIII. Традиционное деление на дисциплины внутри математики таково.

  • Арифметика — наука о целых числах и дробях. Пример теоремы из арифметики: вычитание нечетного числа из четного дает в ответе нечетное число.

  • Геометрия — наука о фигурах в пространстве — точках, линиях, кривых, трехмерных объектах. Пример теоремы: сумма углов треугольника на плоскости равна 180 градусам.

  • Алгебра — использование абстрактных символов для представления математических объектов (чисел, линий, матриц, преобразований) и изучение правил, по которым эти символы можно комбинировать. Пример теоремы: для любых двух чисел x и y имеет место равенство (x + y) × (x – y) = x2 – y2.

  • Анализ — наука о пределах. Пример теоремы: гармонический ряд расходится (т. е. неограниченно возрастает).

Кроме этого, в современной математике есть, конечно, много всего другого. Например, в ней есть теория множеств, созданная Георгом Кантором в 1874 году, а есть «основания» — раздел, который в 1854 году усилиями англичанина Джорджа Буля отделился от классической логики и в котором исследуются логические основы всех математических концепций. Сами традиционные категории также разрослись и стали включать в себя целые новые темы — геометрия вобрала в себя топологию, алгебра — теорию игр и т. д. Еще до начала XIX века происходило значительное просачивание из одной области в другую. Например, тригонометрия (само слово было впервые употреблено в 1595 году) содержит в себе элементы и геометрии, и алгебры. В XVII веке Декарт арифметизировал и алгебраизировал значительную часть геометрии (правда, чисто геометрические доказательства в стиле Эвклида сохранили свою популярность до наших дней за их ясность, изящество и остроумие).

Как бы то ни было, четырехчленное деление сохраняет свою роль в качестве первоначальной ориентировки в математике. Эта классификация полезна и для понимания одного из величайших завоеваний математики XIX столетия, о котором мы далее будем говорить как о «великом соединении» — привязывании арифметики к анализу, что привело к созданию совершенно новой области исследований — аналитической теории чисел. Позвольте познакомить вас с человеком, который одной только публикацией статьи объемом в восемь с половиной страниц дал жизнь аналитической теории чисел, успешно развивающейся и поныне.

Глава 2. Почва и всходы

I. О Бернхарде Римане известно немного. Он не оставил никаких документов, позволяющих судить о его внутренней жизни, — за исключением того, что можно почерпнуть из его писем. Его современник и друг Рихард Дедекинд оказался единственным близким к Риману человеком, оставившим подробные воспоминания. Но и они занимают всего 17 страниц и проясняют не так много. Я не могу поэтому даже пытаться охватить в дальнейшем изложении всю личность Римана, но все-таки надеюсь, что читатель вынесет из этого рассказа нечто большее, чем просто имя. В данной главе описание научной деятельности Римана и всего, что с ней связано, сведено к минимуму; об этом мы поговорим более подробно в главе 8.

Сначала опишем время и место жизни нашего героя.

Простая одержимость
Северо-западная Германия после 1815 года. Государство Ганновер состоит из двух частей: ему принадлежат и город Ганновер, и Геттинген. Пруссия состоит из двух больших частей и нескольких более мелких; и Берлин, и Кельн — прусские города. Герцогство Брауншвейгское состоит из трех частей.

II. Решив, что Французская революция дезорганизовала нацию и сделала французов в силу пробудившихся в них республиканских и антимонархических идей недееспособными, враги Франции попытались извлечь пользу из сложившейся ситуации. В 1792 году огромные силы, в основном состоящие из австрийских и прусских войск, но включавшие и отряд из 15 тысяч французских эмигрантов, двинулись на Париж. К их удивлению, армия революционной Франции оказала сопротивление, навязав наступавшим артиллерийскую дуэль в густом тумане у деревни Вальми 20 сентября того года. Эдвард Кризи в своем классическом труде «Пятнадцать решающих битв в мировой истории» называет это битвой при Вальми5. Немцы называют ее канонадой при Вальми. Под тем или иным именем это событие часто берут за отметку, знаменующую начало серии войн, захлестнувших Европу в последующие 23 года. Эти войны известны как Наполеоновские, хотя есть своя логика в том, чтобы называть их (если бы такое название еще оставалось вакантным) Первой мировой войной, поскольку они в том числе включали столкновения в обеих Америках и на Дальнем Востоке. Когда все в конце концов завершилось мирным договором, выработанным на Венском конгрессе (8 июня 1815 года), Европа перешла в другой долгий (почти в столетие) период — период относительного мира.

Одним из последствий договора явилось некоторое упорядочение ситуации с германскими народами в Европе. До Французской революции говорящий по-немецки европеец мог оказаться подданным или габсбургской Австрии (в этом случае он почти наверняка был бы католиком), или королевства Пруссия (где он с большей вероятностью был бы протестантом) либо жителем одного из трехсот с чем-то мелких княжеств, раскиданных по карте того, что мы сейчас называем Германией. Мог он оказаться и подданным короля Франции или короля Дании либо гражданином Швейцарской конфедерации. («Упорядочение» надо понимать относительно — после него осталась достаточная доля беспорядка, чтобы периодически вызывать войны меньшего масштаба и внести свою лепту в создании предпосылок великих конфликтов XX века.) Австрия сохранила свою империю (включавшую огромное число ненемцев: венгров, славян, румын, чехов и т. д.); в Швейцарии, Дании и Франции при этом оставались те, кто говорил по-немецки. Но все же сделанное было неплохо — для начала. Триста с чем-то административно-государственных единиц, составлявших Германию XVIII столетия, консолидировались в 34 суверенных государства и 4 вольных города, и признанием их культурного единства послужило создание Германского союза.

Крупнейшими германскими государствами оставались Австрия и Пруссия. Население Австрии составляло около 30 миллионов человек, из них лишь 4 миллиона говорили по-немецки. В Пруссии насчитывалось около 15 миллионов подданных, большинство из которых говорило по-немецки. Кроме Австрии и Пруссии только одно германское государство обладало населением более 2 миллионов человек — Бавария. В каждом из четырех оставшихся было менее миллиона жителей: это королевства Ганновер, Саксония, Вюртемберг и Великое герцогство Баден.

Королевство Ганновер было образованием достаточно странным, потому что король в этом королевстве практически отсутствовал. Дело в том, что ввиду сложных династических причин он одновременно являлся королем Англии. Все четыре первых короля, именуемые в Англии «ганноверскими королями», носили имя Георг6 . Четвертый из них сидел на троне и в 1826 году, когда появился на свет главный герой нашей истории про Гипотезу Римана.

III. Георг Фридрих Бернхард Риман родился 17 сентября 1826 года в деревушке Брезеленц в выдающемся на восток углу королевства Ганновер. Эта часть королевства известна под названием Вендланд; «венд» — старое немецкое название говорящих по-славянски народов, живших в этих землях. Вендланд был самой западной точкой, достигнутой славянами в ходе великого славянского переселения VI века. Само название «Брезеленц» происходит от слова «береза». Славянские наречия и фольклор сохранились там до Нового времени — философ7 Лейбниц (1646–1716) поощрял их исследование, однако с самого конца Средневековья в Вендланде постоянно оседало немецкое население, и ко временам Римана это в значительной степени определило его состав.

Вендланд был, да и остается, до некоторой степени захолустьем. В настоящее время это наименее густонаселенный район земли Нижняя Саксония с плотностью населения всего в 110 человек на квадратную милю. Здесь мало промышленных предприятий и больших городов. В прежние времена главным связующим звеном с остальным миром была могучая — шириной около 250 ярдов — Эльба, протекающая всего в 7 милях от Брезеленца. В XIX столетии идущие по Эльбе корабли везли в Гамбург строевой лес и сельскохозяйственную продукцию из Центральной Европы, а на обратном пути загружали уголь и промышленные товары. Недавно, когда Германия в течение нескольких десятилетий была разделена на Восточную и Западную, как раз через Вендланд по Эльбе проходила граница, что ни в коей мере не способствовало развитию региона. Эта равнинная, однообразная местность, на которой фермы перемежаются пустошами, болотами и негустыми лесами, к тому же подвержена наводнениям. Крупное наводнение 1830 года могло оказаться первым значительным событием, вторгшимся из внешнего мира в детство Бернхарда Римана8 .

Отец Римана Фридрих Бернхард Риман был лютеранским священником и ветераном войн с Наполеоном. Уже в зрелом возрасте он женился на Шарлотте Эбелль. Бернхард, бывший вторым ребенком в семье, испытывал особенно тесную привязанность к своей старшей сестре Иде (свою дочь он назовет этим же именем). За ним родились еще четверо детей — мальчик и три девочки. С точки зрения современного жизненного уровня, который мы склонны воспринимать как само собой разумеющийся, нелегко представить себе тяготы, которые приходилось преодолевать немолодому уже деревенскому священнику ради содержания жены и шестерых детей в бедном и малоразвитом районе на задворках государства в начале XIX столетия. Из шести детей Риманов только Ида прожила достаточно долго. Все остальные умерли рано, одной из причин чего могло быть плохое питание в детстве. Мать Римана также умерла рано, еще до того, как ее дети выросли.

Но даже если не говорить о бедности, то нам, живущим и работающим в странах с современной экономикой, все равно требуется усилие, чтобы представить себе, как в те времена и при тех обстоятельствах сложно было найти работу. За пределами больших городов средний класс практически отсутствовал. Тут и там можно было встретить торговца, пастора, школьного учителя, врача или государственного чиновника, но подавляющее большинство населения, не державшего в собственности землю, представляло собой ремесленников, домашних слуг или крестьян. Единственным достойным занятием для женщин было идти в гувернантки; во всех остальных случаях женщины целиком зависели от мужа или других мужчин в семье.

Когда Бернхард был еще ребенком, его отец получил новый приход в Квикборне, в нескольких милях от Брезеленца и ближе к великой реке. Квикборн и сегодня сонная деревня, состоящая из обшитых деревом домов и в основном немощеных улиц, по краям которых растут мощные старые дубы. Это местечко, еще меньшее, чем Брезеленц, оставалось домом для всей семьи до смерти старшего Римана в 1855 году. Оно было средоточием эмоционального мира Бернхарда практически до тридцатилетнего возраста. При каждой возможности он стремился вернуться туда и побыть в кругу семьи — единственном обществе, где он чувствовал себя легко.

Поэтому, когда мы читаем о жизни Римана, его следует представлять себе на фоне именно этого окружения — окружения родного дома, где он рос и воспитывался, которое он заботливо хранил в себе и вдали от которого тосковал. Равнинная, сырая местность; открытый ветрам, освещаемый лишь керосиновыми лампами и свечами, недостаточно отапливаемый зимой и плохо проветриваемый летом дом; долгие периоды болезней домашних, никто из которых не отличался крепким здоровьем (все, по-видимому, болели туберкулезом); один и тот же узкий круг общения семьи священника в отдаленной деревушке; однообразная пища в утяжеленном варианте и без того тяжелой национальной кухни («В течение длительного времени он страдал хроническими запорами», — пишет Нейеншвандер9 ). Как они все это перенесли? Но они не знали лучшей доли, а простой сердечной привязанности и любви порой достаточно, чтобы участием поддержать человеческий дух среди невзгод.

IV. Всё это изобилие государств — королевств, княжеств, герцогств и великих герцогств, — составлявших во времена Римана северную Германию, по большей части представляло собой независимые друг от друга образования, каждое из которых проводило свою собственную внутреннюю политику. И в этой аморфной структуре находилось место для гордости за свое государство и для соревнования с соседями.

Во многих аспектах пример подавала Пруссия. Восточные области этого королевства оставались единственным германским государством, сохранившим после поражений 1806–1807 годов по крайней мере некоторую степень независимости от Наполеона. Под давлением постоянно нависающей угрозы пруссаки сконцентрировались на реформе внутренней жизни; в 1809–1810 годах, в частности, под руководством философа, дипломата и лингвиста Вильгельма фон Гумбольдта в Пруссии пересмотрели всю систему среднего образования. Классицист фон Гумбольдт был человеком, жившим в башне из слоновой кости, который однажды сказал: «Alles Neue ekelt mich an» — «Все новое меня отвращает» (его брат Александр был великим путешественником и естествоиспытателем). Но, как ни странно, реформы, проведенные этим закоренелым реакционером, в конце концов превратили образовательную систему в германских государствах в самую передовую в Европе с точки зрения учебного процесса.

В основу образовательной системы была положена десятилетняя гимназия, предназначенная для обучения с десятилетнего до двадцатилетнего возраста. В самом первоначальном виде учебный план в гимназии выглядел следующим образом:

латынь . . . . . . . . . . . . . . . . . . . . . . . 25 процентов
греческий . . . . . . . . . . . . . . . . . . . . . 16 процентов
немецкий . . . . . . . . . . . . . . . . . . . . . 15 процентов
математика . . . . . . . . . . . . . . . . . . . . 20 процентов
история и география . . . . . . . . . . . . . 10 процентов
естественные науки . . . . . . . . . . . . . . . 7 процентов
религия . . . . . . . . . . . . . . . . . . . . . . . 7 процентов

Для сравнения, в 1840 году в широко известных английских школах для мальчиков 75–80 процентов учебного времени — 40 часов в неделю — отводилось на изучение классических языков и литературы (Джонатан Гаторн-Харди, «Феномен частных школ»).

В Квикборне не было гимназии, и Риман начал по-настоящему учиться в школе лишь в четырнадцатилетнем возрасте, что соответствовало четвертому классу гимназии. Сама гимназия находилась в городе Ганновере, столице королевства, в 80 милях от Квикборна. Выбор в пользу Ганновера определялся тем, что там жила бабушка Бернхарда по материнской линии, и это позволяло семье Риман сэкономить на плате за проживание. До поступления в гимназию Римана обучал отец при некотором содействии деревенского учителя по фамилии Шульц.

Четырнадцатилетнему Риману пришлось в Ганновере несладко: он был смертельно застенчив и к тому же сильно тосковал по дому. Его единственным внеклассным занятием, насколько нам известно, был поиск доступных ему по карману подарков, которые он посылал на дни рождения родителям, братьям и сестрам. После смерти бабушки в 1842 году ситуация несколько поправилась — Римана перевели в другую гимназию, на этот раз в городе Люнебург. Вот как Дедекинд описывает новое положение дел.

«Большая близость к дому и представившаяся в силу этого возможность проводить каникулы вместе с семьей добавили немного счастья в его более поздние школьные годы. Нет сомнения, что путешествия туда и обратно, в основном совершавшиеся пешком, изматывали его физически, как никогда ранее10 . Его мать, которую, увы, ему скоро предстояло потерять, выражала в своих письмах сильное беспокойство по поводу его здоровья, прибавляя многочисленные сердечные предупреждения, чтобы он избегал слишком больших физических нагрузок».

Не похоже, чтобы Риман был хорошим учеником. При его складе ума он мог сосредоточиваться только на вещах, которые он находил интересными; по большей части это была математика. Кроме того, он был перфекционистом, для которого скрупулезность в написании безупречного сочинения была важнее срока, в который он это сочинение напишет. Чтобы подтянуть его в плане школьных занятий, директор устроил так, что Риман поселился вместе с учителем древнееврейского языка по фамилии Зеффер или Зайфер. Заботами этого господина Риман настолько улучшил успеваемость, что в 1846 году его приняли в Геттингенский университет на богословский факультет. Предполагалось, что он станет священником, как и его отец.

V. Геттингенский университет был единственным университетом в области юрисдикции Ганноверской церкви, так что это был вполне естественный выбор. Название «Геттинген» будет постоянно возникать на протяжении всей этой книги, поэтому несколько слов о его истории будут нелишними. Геттингенский университет был основан в 1734 году Георгом II Английским (который являлся курфюрстом Ганновера11 ) и быстро попал в число лучших германских провинциальных университетов; в 1823 году в нем обучалось более 1500 студентов.

Однако 1830-е годы были тревожным временем. Из-за политических волнений, затронувших как студентов, так и профессоров, в 1834 году число обучающихся упало до цифры менее чем в 900 человек. Три года спустя ситуация достигла критической стадии, а Геттинген стал известен на всю Европу. В 1837 году король Англии и Ганновера Вильгельм IV умер, не оставив законного наследника, и английский трон перешел к его племяннице Виктории. Ганновер, однако, придерживался салических законов средневековых франков, по которым трон мог наследовать только потомок мужского пола. На этом Англия и Ганновер расторгли взаимные объятия. Новым правителем Ганновера стал Эрнст-Август, старший из здравствовавших потомков Георга III.

Эрнст-Август был большим реакционером. Его первым актом стала отмена либеральной конституции, пожалованной за четыре года до этого Вильгельмом IV. Семь видных профессоров Геттингенского университета отказались принести присягу в поддержку новой конституции и были уволены. Троих из них даже изгнали за пределы королевства. Уволенные ученые, известные как «геттингенская семерка», стали героями среди социальных и политических реформаторов по всей Европе12 . К уволенным относились и двое братьев Гримм, прославившихся своими сказками; они были серьезными кабинетными учеными-филологами.

В ходе перемен, последовавших за прокатившимися по Европе волнениями и переворотами 1848 года, Ганновер получил новую либеральную конституцию. По крайней мере один из «геттингенской семерки», физик Вильгельм Вебер, был восстановлен в должности. Университет вскоре вернул себе свой былой блеск и в конце концов, как мы увидим, стал знаменитым центром знаний. Но когда Бернхард Риман появился там в 1846 году, этот подъем еще не наступил. Риману Геттингенский университет представился местом, находящимся в состоянии упадка, поскольку число студентов еще не выровнялось после событий девятилетней давности.

Тем не менее одно существенное обстоятельство делало Геттинген привлекательным местом для молодого Римана. Геттингенский университет был университетом Карла Фридриха Гаусса, величайшего математика своего времени (а возможно, и всех времен)13.

Когда Риман прибыл в Геттинген, Гауссу было 69 лет. Его лучшие работы были уже сделаны, а преподавал он немного, относясь к преподаванию как к пустой трате времени. Однако его присутствие в любом случае должно было произвести впечатление на Римана, который к этому моменту уже заразился вирусом математики. Известно, что Риман ходил на лекции Гаусса по линейной алгебре и на лекции Морица Штерна по теории уравнений. В какой-то момент в течение академического 1846–47 года Риман, по-видимому, признался отцу, что его куда более интересует математика, нежели теология; отец, судя по всему, бывший добрым родителем, признал сделанный сыном выбор жизненного поприща. Так Бернхард Риман стал математиком.

VI. О личности Римана в зрелом возрасте до нас дошло очень немногое. Основным источником служат короткие воспоминания Дедекинда, уже упоминавшиеся в начале главы. Эти воспоминания, написанные спустя 10 лет после смерти их героя, были напечатаны в качестве дополнения к первому изданию «Собрания трудов» Римана (однако, насколько мне известно, они так и не были переведены на английский)14. Я существенно опирался на эти воспоминания, так что многие утверждения и в этой главе, и в главе 8 должны были бы сопровождаться словами «согласно Дедекинду», о чем читателю следует постоянно помнить. Хотя Дедекинд мог, разумеется, ошибаться фактологически, он имел самые большие основания претендовать на то, чтобы считаться Риману другом. Он был прямым и честным человеком, и мне никогда не встречалось никаких намеков на то, что он писал о своем герое как-то иначе, нежели скрупулезно излагая истину, за единственным и объяснимым исключением, о котором будет сказано чуть ниже. Другие доступные источники — это личные письма Римана, многие из которых сохранились, а также случайно зафиксированные комментарии студентов и коллег.

Всё вместе говорит нам следующее.

  1. Риман был чрезвычайно застенчивым человеком. Он избегал человеческих контактов настолько, насколько это удавалось, и неуютно чувствовал себя в кругу других людей. Его единственные близкие привязанности — а они были и правда очень близкими — концентрировались в семье, а какие бы то ни было другие связи, если и возникали, касались математики и математиков. Когда он находился вдали от семьи, от дома отца в его приходе Квикборн, он страдал от тоски.

  2. Он был очень набожным, в духе немецкого протестантизма (Риман был лютеранином). По его убеждению, суть религии, если буквально переводить с немецкого, как об этом пишет Дедекинд, заключалась в том, чтобы «ежедневно ответствовать за себя пред лицом Господа».

  3. Он глубоко размышлял о философии и рассматривал свою работу в сфере математики в более широком философском контексте.

  4. Он был ипохондриком, как в старом, так и в новом понимании этого слова. (Раньше оно стояло в ряду синонимов к выражению «подверженный депрессиям».) Дедекинд избегает этого слова, вероятно, из-за уважения к чувствам вдовы Римана, которая очень не хотела, чтобы ипохондрия Римана стала широко известной. Тем не менее Дедекинд ясно дает понять, что Риман был подвержен наплывам очень глубокой печали, в особенности после смерти своего отца, которого он боготворил. Способом справиться с этим для Римана было погружение в работу.

  5. Он никогда не отличался хорошим здоровьем; особенно разрушительное влияние на него оказали долгие годы лишений, которым в той стране и в те времена бедному человеку приходилось подвергать себя, если он намеревался получить высшее образование.

Есть соблазн воспринимать Римана как довольно унылую личность, при этом несколько патетического склада. Но это означало бы, что мы принимаем во внимание лишь внешние черты и манеры. Под внешностью застенчивого и неуверенного в себе человека скрывался блестящий и потрясающе дерзкий ум. Сколь бы робким и вялым ни казался этот человек тем, кто эпизодически с ним встречался в обыденной жизни, в математике Риман демонстрировал бесстрашный размах и энергию, свойственные кампаниям Наполеона. Его математические друзья и коллеги, разумеется, знали об этом и относились к нему с почтением.

В связи с Риманом мне вспоминается один эпизод из романа Сомерсета Моэма «Луна и грош», основанного на жизни художника Гогена. Герой Моэма, подобно Гогену, умирает от проказы в хижине на острове в Тихом океане, куда он удалился в поисках своего видения искусства. Узнав, что тот умирает, местный доктор приходит в его хижину. Это бедная лачуга, убогая и полуразвалившаяся. Но, переступив порог, доктор в изумлении обнаруживает, что изнутри стены с пола до потолка завешаны великолепными, волшебной красоты картинами. Риман подобен той хижине: на взгляд извне он был достоин жалости; внутри же он сиял ярче солнца.

VII. В области высшего образования реформы Вильгельма фон Гумбольдта в течение некоторого времени давали положительные результаты только в столице Пруссии Берлине. Положение в других немецких университетах оставалось таким, как оно описано у Генриха Вебера в предисловии к «Собранию трудов» Римана:

«Университеты и смысл их существования воспринимались их коронованными покровителями как место для подготовки юристов и врачей, учителей и проповедников, а также место, где сыновья знати и богачей могли бы проводить время ярко и со вкусом».

И действительно, реформы фон Гумбольдта временно оказали на немецкое высшее образование негативный эффект. Они привели к повышению спроса на квалифицированных учителей старших классов, а единственным способом удовлетворить этот спрос была подготовка этих учителей в университетах. Даже великий Гаусс в 1846–1847 годах читал в Геттингенском университете в основном элементарные курсы. В поисках более серьезных возможностей Риман перевелся в Берлинский университет. Два года, проведенные в этом учреждении, где наставниками были лучшие математические умы Германии, подвели Римана к полной математической зрелости.

(Читая эту главу, как и другие исторические главы, посвященные той эпохе, следует отдавать себе отчет: до того как в Европе благодаря Наполеону — впрочем, в некоторых странах даже еще позже — произошла переоценка ценностей, существовало четкое различие между университетами, назначение которых состояло в обучении и подготовке к тому, что считалось необходимым для думающей элиты в данной стране, и научными академиями и обществами, созданными для проведения исследований. Эти же исследования в основном, с большими или меньшими вариациями в зависимости от места, времени и наклонностей правителя, были ориентированы на практическую пользу для государства. Учреждения, подобные Берлинскому университету (основанному в 1810 году), где велась некоторая исследовательская работа, или Санкт-Петербургской академии наук на раннем этапе ее существования, были редким исключением из этого общего правила. Берлинская академия наук, где Гипотезе Римана предстояло впервые увидеть свет, была чисто исследовательским учреждением, построенным по образцу Королевского общества в Англии.)

Нам не известно практически ничего о бытовой стороне жизни Римана в берлинский период, жизни за пределами его математических занятий. Дедекинд сообщает только об одном достойном упоминания инциденте. В марте 1848 года берлинская толпа, разгоряченная февральской революцией в Париже, вышла на улицы, требуя объединения германских государств в единую империю. Возводились баррикады, солдаты пытались их снести, пролилась кровь. Прусским королем в то время был Фридрих-Вильгельм IV, несколько мечтательный и отрешенный от мира человек, находившийся под сильным воздействием идей романтизма, с сентиментальными воззрениями относительно своего народа и с представлениями об идеальном государстве как о патерналистской монархии. Во время кризиса он показал свою полную несостоятельность, отправив армию назад в казармы и оставив дворец незащищенным до того, как бунтовщики были рассеяны. Студенты университета образовали верные власти караульные отряды для защиты короля, и Риман нес службу в таком карауле с 9:00 одного дня до часа следующего дня, т. е. в общей сложности 28 часов.

По возвращении в Геттинген в 1849 году Риман начал работу над диссертацией, которую он защитил через два года, в возрасте 25 лет; диссертация была посвящена теории функций комплексной переменной. Через три года после этого он начал преподавание в Геттингене, а в 1857 году получил место экстраординарного профессора, что было его первой должностью, на которой ему платили постоянное жалованье. (Обычно предполагалось, что лекторы обходятся тем, что платят за обучение студенты, — столько студентов, сколько лектору удастся привлечь на свои лекции. Должность эта называлась Privatdozent — буквально «частный преподаватель».)

Если пользоваться языком, употребительным в современных биографиях знаменитостей, то 1857 год следует также назвать «годом прорыва» Римана. Его диссертация 1851 года ныне рассматривается как классический математический труд XIX столетия, но в момент своего появления она не привлекла большого внимания, несмотря на энтузиазм, который выказал Гаусс. Другие работы, написанные Риманом в начале 1850-х годов, не получили широкой известности и были опубликованы в доступном для публики виде только после его смерти. Относительная известность, которую он вообще приобрел, пришла к нему благодаря содержанию его лекций, но и тут таилась сложность: значительная часть этого содержания слишком опережала время, чтобы ее должным образом оценили. Однако в 1857 году Риман опубликовал работу по анализу, немедленно получившую признание как существенный вклад в эту науку. Она называлась «Теория абелевых функций»15. В ней он обратился к актуальным проблемам, применив остроумные и новаторские методы. За год или два его имя стало известно математикам по всей Европе. В 1859 году он стал ординарным профессором16 в Геттингенском университете; эта должность наконец принесла ему достаточные средства, чтобы жениться. Женился он три года спустя на Элизе Кох, подруге своей старшей сестры.

11 августа того же 1859 года, незадолго до своего 33-летия, Бернхард Риман стал членом-корреспондентом Берлинской академии наук. Основанием для принятия его в ряды академии послужили те две единственные работы Римана, которые пользовались известностью, — диссертация 1851 года и работа 1857 года по абелевым функциям. Избрание в члены Берлинской академии наук было огромной честью для молодого математика. По традиции, новоизбранный член представлял в академию оригинальную работу по теме своих исследований. Работа, которую представил Риман, называлась «О числе простых чисел, не превышающих данной величины» (Über die Anzahl der Primzahlen unter einer gegebenen Grösse).

Математика после этого уже никогда не была прежней.


1 Никола Орем (Nicole d’Oresme) был не только математиком, но и естествоиспытателем, философом, физиком, астрономом и экономистом, а также воспитателем дофина, будущего короля Карла V. (Примеч. перев.)

2 Стандартным русским словосочетанием является также математический анализ (или матанализ, как говорят, например, все те студенты, которые не называют его просто матаном). В переводе в подавляющем большинстве случаев оставлен просто «анализ», чего достаточно для передачи сути дела. Соответственно, прилагательное «аналитический» означает «[изучаемый или выраженный] средствами анализа». (Примеч. перев.)

3 Точнее, сумма некоторого числа членов гармонического ряда. (Примеч. перев.)

4 То есть для того, чтобы приблизиться к пределу — в данном случае к числу π — с хорошей точностью, надо брать члены последовательности с достаточно большими номерами. (Примеч. перев.)

5 Силы французской армии «Север» под командованием Франсуа Дюмурье и французской армии «Центр» под командованием Франсуа-Кристофа Келлермана остановили продвижение армии под командованием герцога Брауншвейгского Карла Вильгельма Фердинанда. Артиллерийское сражение оказалось тактически безрезультатным, но стратегически важным как доказательство жизнеспособности Французской революции. Книга «Пятнадцать решающих битв в мировой истории» вышла в 1851 г. (Примеч. перев.)

6 Этот исторический факт я усвоил, когда ходил в Англии в школу, с помощью следующей песенки викторианских времен:

    Георг был Первый трусом; даже
    Второй был ненамного гаже.
    И не сыскал никто на свете
    Достойных черт в Георге Третьем.
    Когда ж Георг Четвертый помер —
    То, к счастью, был последний номер.
                         (Пер. М. Визеля.)

На самом деле Георги на этом не закончились — в XX веке их было еще двое. (Здесь и далее не отмеченные особо примечания принадлежат автору.)

7 И математик, один из создателей дифференциального и интегрального исчисления (в частности, автор современного обозначения для интеграла). (Примеч. перев.)

8 Другой мощный подъем Эльбы произошел в 1962 г. и вызвал значительные жертвы и разрушения в районе Вендланд. После этого возвели систему крупных дамб. В августе 2002 г., как раз во время завершения моей работы над книгой, Эльба снова вышла из берегов. Однако сооруженные в 1962 г. дамбы выдержали напор, и регион пострадал меньше других, расположенных выше по течению.

9 Эрвин Нейеншвандер — профессор истории математики в Цюрихском университете. Он является главным авторитетом по жизни и творчеству Бернхарда Римана; он издал письма Римана. Я использовал в этой книге результаты его исследований. Я также многое взял из двух единственных изданных на английском книг, в которых удалось найти сколько-нибудь обстоятельный рассказ о Римане: «Риман, топология и физика» Михаила Монастырского (перевод 1998 г., выполненный Роджером Куком, Джеймсом Кингом и Викторией Кинг) и «Бернхард Риман, 1826–1866» Детлефа Лаугвитца (перевод 1999 г., выполненный Абе Шенитцером). Хотя это математические биографии — т. е. в них больше математики, чем биографических фактов, — обе книги позволяют составить хорошее представление о самом Римане и о его времени и содержат много ценных наблюдений. (См.: Монастырский М. И. Бернхард Риман. Топология. Физика. М.: Янус-К, 1999. — Примеч. перев.)

10 Еще бы не изматывали. 38 миль по прямой — это 10 часов ходьбы быстрым шагом.

11 Ганновер стал королевством только в 1814 г. До этого его правители носили титул курфюрста, означавший их право участвовать в выборах императора Священной Римской империи. Священная Римская империя прекратила свое существование в 1806 г.

12 Эрнст-Август был предпоследним королем Ганновера. В 1866 г. это королевство стало частью Прусской империи, что оказалось поворотным моментом в создании современной Германии. (Носивший титул герцога Камберлендского Эрнст-Август был пятым сыном Георга III. Королева Виктория была дочерью его старшего брата Эдуарда, герцога Кентского, умершего в 1828 г. — Примеч. перев.)

13 Оценки разнятся, но Гаусса почти всегда ставят в число первых трех — как правило, вместе с Ньютоном и Эйлером или Архимедом.

14 Генрих Вебер и Рихард Дедекинд подготовили первое издание в 1876 г. Самое последнее издание «Собрания трудов», составленное Рагаваном Нарасимханом, вышло в 1990 г. Кстати, по-немецки «собрание трудов» — Gesamelte Werke, и эти слова так часто встречаются в математической литературе, что, по моим наблюдениям, англоговорящие математики употребляют их по-немецки, совершенно не отдавая себе в этом отчета.

15 Абелева функция — это многозначная функция, получаемая при обращении интегралов определенного вида. Данное название не имеет широкого распространения в наше время. Мы упомянем многозначные функции в главе 3, теорию функций комплексной переменной в главе 13, а обращение интегралов — в главе 21.

16 Используя уже утвердившийся у нас американизм — «полным профессором». В этих же терминах «экстраординарный профессор» — это Assistant Professor, что до некоторой степени соответствует российскому доценту. (Примеч. перев.)


6
Показать комментарии (6)
Свернуть комментарии (6)

  • dudenkov  | 30.11.2010 | 21:27 Ответить
    Во введении очень обоснованно говорится, что в анализе ещё в XIX веке не признают бесконечность числом и принято переформулировать все утверждения, оперирующие с бесконечностью, к виду, использующему только конечные величины. И ниже говорится о теории множеств как о выделившемся из математики в конце XIX века новом разделе - основанной Кантором теории множеств. В то же время теория множеств особенно известна именно тем, что в ней бесцеремонно сравниваются между собой бесконечные множества, и выдвигается проникшая даже в учебники не то гипотеза, не то теорема континуума - большей мощности "несчетного" иррациональных чисел по сравнению со "счетным" множеством чисел рациональных. Вышеприведенные правила анализа сводят такой вывод к лишённому математического смысла делению бесконечности на бесконечность. На то, что выводы Кантора ошибочны, обращал внимание академик Арнольд. В работах Зенкина с мехмата МГУ приводился целый перечень грубых логических ошибок в доказательстве Кантора, и делался вывод, что оно относится к числу известных со времен Зенона софизмов - некорректных и ошибочных математических формул или логических утверждений, записанных таким образом, что кажутся истинными, дело разве что в том, что подавляющее большинство математиков доказательства Кантора не читали и тем более не пытались перепроверять, принимая на веру из учебников. Таким образом, доказательство Кантора представляет собой достаточно редкий пример ошибки, распространяющейся через систему научного образования как вирусный мем (см.: Ричард Броуди, Психические вирусы), причём из него делаются далеко идущие выводы - например, не менее известная теорема Гёделя о неполноте основывается именно на выводах Кантора. Из теорем о свойствах функций комплексного переменного следует, что бесконечность в полюсе всего лишь предел некоторого ряда, зависящий от направления движения к этому полюсу, и можно много написать простеньких формул функций таких, что, например, пределом при движении в полюс слева будет нуль, а пределом справа - бесконечность. Также хорошо известны условно сходящиеся ряды, сумма которых в зависимости от выбранного способа их суммирования может быть сделана любым числом. Так что при внимательном взгляде абсурды становится очевидными. Но сила студенческого гипноза у большинства перевешивает здравый смысл...
    Ответить
    • gthnjdbx > dudenkov | 02.10.2011 | 19:15 Ответить
      Скажите, а эти "ошибки Кантора" не легли ли в основу тех областей математики на которые опирается доказательство ВТФ?
      Ответить
      • blaze79 > gthnjdbx | 09.01.2012 | 12:05 Ответить
        "ошибок Кантора" была ровно одна. Он несколько наивно определил понятие множества, сам получив нехилое противоречие. Проблему решили введя систему аксиом для множеств, в частности аксиома регулярности решила дело. Все остальное что написал комментатор (он не математик, первый курс матана явно не осилил) - сок его мозга.

        На самом деле проблема несколько в другом - в современном наборе аксиом есть "аксиома выбора", позволяющая строить бесконечные множества, ряд математиков ее отрицает, считая ее не интуитивной. Поэтому их называют "интуиционисты", "конструктивисты", "жесткие конструктивисты" и т.д. Они строят математику без этой аксиомы и жутко собой довольны. Остальные математики смотрят на них как на чудаков.
        Ответить
    • blaze79 > dudenkov | 09.01.2012 | 12:00 Ответить
      Ерунду какую-то пишите. Кантор оперировал бесконечными множествами и понятием "мощность множества", у него все логически безупречено, ему принадлежит теорема о мощности множества всех подмножеств, применяя ее к универсуму получалось противоречие. Из него вышли сформулировав аксиоматическую теорию множеств (например на базе аксиоц Цермело-Френкеля), никаких логических ошибок она не содержит, ее смело дают студентам на первом курсе, у меня с нее начинался матан.

      Континуум-гипотеза, это просто гипотеза. Теорему о ее недоказуемости доказал Поль Коэн в 60-х годах.
      Ответить
    • blaze79 > dudenkov | 09.01.2012 | 12:17 Ответить
      Еще хотелось бы узнать про "силу гипноза". Дело в том, что даже на нашем слабоватом матфаке, поиск ошибок у лектора являлся настоящим увлечением у студентов 1-2 курса, сильно повышающим их ЧСВ. За найденную ошибку на моей памяти был поставлен автомат; я полчаса с преподавателем по матану прояснял один момент у него в лекции, при том, что он принимал в этот момент экзамен у другой группы и вышел покурить.

      Никакого "студенческого гипноза" несуществует, по крайней мере у математиков.
      Ответить
  • Levan  | 15.12.2010 | 15:22 Ответить
    Хорошо, популярно написанный текст. Прекрасный перевод. Спасибо!
    Ответить
Написать комментарий
Элементы

© 2005–2025 «Элементы»