В качестве последнего примера использования радиоуглеродного метода рассмотрим более подробно историю определения возраста знаменитой Туринской плащаницы — покрывала, в которое, согласно Евангелию, было завернуто после казни тело Христа и на котором якобы остался отпечаток его лица и тела (рис. 7.4, 7.5).
В 1978 году в итальянском городе Турине была выставлена для всеобщего обозрения плащаница — льняное полотнище длиной 4,3 и шириной 1,1 м с пятнами, похожими на фигуру человека. Эта плащаница появилась во Франции в середине XIV века, много раз перевозилась из одной церкви в другую, в XVI веке побывала даже в пожаре, но была спасена, а последние 400 лет хранилась в Турине. С тех пор не угасали споры о ее подлинности. Еще в 1390 году папа Климент VII объявил плащаницу подделкой, тогда как папа Павел VI назвал ее в 1978 году самой важной реликвией в истории христианства.
Первую фотографию плащаницы разрешили сделать в 1898 году, и вот уже более ста лет не умолкают споры ученых. Однако совершенствующиеся год от года средства научного анализа (изучение структуры и состава волокон, способа их плетения, наличие на них пыльцы определенных растений, анализ пятен краски и крови и т. д. и т. п.) не только не прояснили вопрос, но еще больше его запутали. Аргументов «за» подлинность плащаницы было не меньше, чем аргументов «против». Главным вопросом, конечно, было время изготовления полотна. Долгое время архиепископ Турина не давал разрешения на радиоуглеродный анализ, и его можно понять, поскольку ученые требовали довольно большого куска. Но когда чувствительность радиоуглеродного метода значительно повысилась, а требования ученых соответственно снизились, было разрешено отрезать от края плащаницы, где не было следов изображения, небольшой кусочек. И вот утром 21 апреля 1988 года в присутствии архиепископа Турина кардинала Баллестреро и большой группы ученых от плащаницы отрезали полоску шириной 1 см и длиной 7 см, которую разделили на три части массой по 50 мг, завернули каждую часть в алюминиевую фольгу и упаковали в пронумерованные капсулы из нержавеющей стали. Эти капсулы вместе с тремя контрольными образцами передали представителям трех ведущих лабораторий из Аризоны (США), Оксфорда (Англия) и Цюриха (Швейцария). Представители лабораторий не знали, что находится в каждой капсуле — это держалось в секрете; в контрольных образцах была ткань из нубийского захоронения XI–XII веков, ткань, снятая с мумии Клеопатры (начало II века), и нити со старинной ризы, изготовленной во время правления французского короля Филиппа IV (1290–1310).
Во всех лабораториях образцы подвергли прежде всего микроскопическому исследованию и тщательной очистке с целью удаления возможных примесей (в разных лабораториях использовали микропылесос, промывку растворителями с применением ультразвука, обработку моющими средствами, горячими кислотами и щелочами). Затем образцы сжигали, образовавшийся углекислый газ превращали в чистый углерод — графит, в котором и определяли содержание 14С с помощью масс-спектрометра.
Отчеты всех лабораторий были собраны в одном месте — Британском музее и проанализированы, а результаты анализа опубликованы в одном из самых уважаемых научных журналов мира — Nature («Природа»); поскольку в работе приняло участие множество исследователей, не удивительно, что у статьи 21 автор! Хотя результаты разных лабораторий несколько отличались, они все же были достаточно близки и указывали на то, что возраст плащаницы составляет примерно 690 лет с ошибкой около 30 лет (возраст по радиоуглеродному методу принято отсчитывать назад от 1950 г.). Хорошо согласовывались данные и контрольных образцов — для их возраста были получены значения 937 лет, 1964 года и 724 года. После введения поправок на изменение содержания 14С в атмосфере в прошлые столетия ученые вынесли решение: с вероятностью не менее 95% ткань плащаницы изготовлена между 1260 и 1390 годами. Таким образом, папа Климент VII как будто оказался прав: плащаница изготовлена именно тогда, когда о ней появилось первое документированное упоминание. Так радиоуглеродный метод датировки, казалось бы, положил конец спорам, которые длились шесть веков.
Однако в науке редко случается так, чтобы то или иное серьезное заявление не встретило бы возражений. Не стал исключением и анализ возраста плащаницы. Вы помните, как сильно можно было ошибиться с определением возраста травы радиоуглеродным методом, если не учитывать особенности ее роста и «питания» выхлопными газами. Там реальный возраст объекта исследования оказался значительно меньше, чем по данным анализа. Не исключены ошибки и «в другую сторону». Когда результаты исследований ткани плащаницы были опубликованы, российские ученые Д. А. Кузнецов, А. А. Иванов и П. Р. Велецкий в 1996 году выдвинули против них такой довод. Как известно, плащаница в 1552 году побывала в пожаре. При этом естественно предположить, что ее ткань могла сильно пропитаться дымом. Дым содержит очень мелкие частицы, от которых ткань не всегда можно отмыть, тем более если эти частицы были в ткани сотни лет. Углерод же, содержащийся в частицах дыма, имеет тот же возраст, что и горевшее дерево. Ученые провели модельный эксперимент, воспроизводивший условия средневекового пожара. Конечно, они взяли не плащаницу, а кусок ткани. Оказалось, что в условиях пожара соотношение атомов стабильного и нестабильного углерода в ткани заметно меняется, а это вносит ошибку в радиоуглеродный метод анализа. Такое загрязнение «старого» (времен Христа) углерода ткани плащаницы более «молодым» (средневековым) вполне могло привести к «омоложению» и самой плащаницы, если судить о ее возрасте по количеству нераспавшегося радиоуглерода.
Совсем недавно подлил масла в огонь американский исследователь из Калифорнийского университета Раймонд Роджерс. В 2005 году он опубликовал о Туринской плащанице сенсационную статью. Ее содержание вкратце сводится к следующему. По его данным, в 1988 году для исследования радиоуглеродным методом взяли исключительно неудачный образец: заплатку, которая была сотни лет назад пришита к обгоревшей ткани и затем подкрашена настолько искусно, что стала неотличима от остальной части плащаницы. Поэтому такое трудоемкое исследование было проведено фактически впустую! А изучение Роджерсом некоторых очень медленных химических изменений, которые в течение веков происходят в любых тканях, привело его к выводу о том, что ткань плащаницы имеет возраст (с учетом возможных ошибок) от 1300 до 3000 лет. То есть плащаница вполне могла быть изготовлена в I веке, когда жил Иисус.
Однако не исключено, что споры вокруг плащаницы будут продолжаться, и это нормально для научного исследования.
Вы уже знаете, что 1 моль вещества содержит огромное число частиц — примерно 6·1023 атомов, ионов или молекул. Как же удалось их подсчитать? Методов определения числа Авогадро было придумано много, но только один из первых методов был основан на прямом подсчете атомов. Конечно, полное число атомов в моле вещества не сосчитать даже за все то время, что существует человечество. Но, во-первых, можно считать атомы не в моле, а в небольшой его части, а во-вторых, считать не все атомы, а только небольшую, но заранее известную их часть. Однако начнем по порядку.
В 1903 году один из наиболее талантливых физиков-экспериментаторов XX века Эрнест Резерфорд (1871–1937) показал, что открытый незадолго до этого новый химический элемент радий испускает положительно заряженные частицы, летящие с большой скоростью. Необходимо было выяснить, много ли таких частиц (их назвали альфачастицами) испускает радий за 1 секунду. Как это сделать? В 1908 году Резерфорд выяснил это очень остроумным способом; в работе ему помогал молодой немецкий физик Ханс Гейгер (1882–1945), именем которого назван счетчик радиоактивного излучения. Для работы они использовали простой прибор, названный спинтарископом. В нем имеется маленькая стеклянная пластинка, покрытая специальным составом — люминофором. Если в темноте к пластинке с люминофором поднести близко радий или какое-либо его химическое соединение, покрытие начнет ярко светиться. Чем меньше радия в образце и чем дальше он расположен от пластинки, тем слабее свечение. Но самое удивительное открывается взгляду, если смотреть на пластинку через сильное увеличительное стекло, а лучше — в микроскоп: вместо равномерного свечения будут видны то там, то тут отдельные яркие вспышки, которые тут же гаснут (рис. 7.6). Впечатление такое, как будто на фоне черного неба видно множество вспыхивающих и гаснущих звезд. Зрелище незабываемое!
Это явление объясняется тем, что каждая альфа-частица, достигшая люминофора, вызывает в нем кратковременную вспышку света. Если частиц много, то и вспышек будет много. Если же частиц мало, то вспышки будут редкими, и их вполне можно будет сосчитать. Каждая вспышка сигнализирует о том, что распался один атом радия, на основании чего Резерфорд заключил: «Впервые в истории стало возможным регистрировать отдельные атомы вещества».
В этом и состояла идея: сосчитать число альфа-частиц, попадающих на пластинку за определенное время на определенном расстоянии от источника излучения, а затем рассчитать общее число частиц, вылетающих из образца. Для этого в лаборатории Резерфорда изготовили прибор, который он назвал «стреляющей трубкой» (рис. 7.7). Крошечное количество радиоактивного вещества (оно содержало всего 0,055 мг радия) поместили на кончик иголки, укрепленной на одном конце трубки. На другом конце трубки на расстоянии 1,5 м было маленькое отверстие диаметром 1,25 мм, через которое альфа-частицы вылетали из трубки и тут же ударялись о пластинку с люминофором, что сопровождалось вспышкой. Для успешного проведения этого опыта требовалась полная темнота, поэтому экспериментатору приходилось заранее провести не меньше часа в темном помещении, чтобы его зрение стало более чувствительным, а следовательно, более восприимчивым к слабым вспышкам света. Физиологи знают, что привыкание (адаптация) глаза к темноте в тысячи раз повышает его чувствительность.
Но это была не единственная и не главная трудность в эксперименте. Оказалось, что альфа-частицы, испускаемые радием, пролетают в воздухе всего несколько сантиметров: им «мешают» лететь по прямой молекулы азота и кислорода в воздухе. Значит, надо было с помощью насоса удалить воздух из трубки, т. е. создать в ней вакуум. А как это сделать, если в трубке на другом ее конце имеется отверстие? Через него воздух будет быстро проникать в трубку, и никакого вакуума создать в ней не удастся. Для таких прекрасных экспериментаторов, как Резерфорд и Гейгер, это не составило особой проблемы. С помощью воска они приклеили снаружи к отверстию листочек слюды. Он был такой тонкий, что практически не задерживал альфа-частицы, которые свободно проходили через него. В то же время воздух уже не мог попасть в трубку и нарушить вакуум.
И вот, наконец, все готово к эксперименту: вакуум достиг нужной глубины, глаза привыкли к темноте. Осталось поудобнее устроиться перед микроскопом и включить секундомер...
Вот одна альфа-частица пролетела сквозь заклеенную слюдой дырочку — вспышка! Проходит несколько секунд — еще одна вспышка, потом третья, четвертая. Опыт длился 10 минут, после чего экспериментатора сменил его помощник: чтобы не было ошибки, опыт надо повторить не один раз, а потом взять среднее значение. Оказалось, что за 10 минут наблюдается в среднем 49 вспышек, значит, столько же альфа-частиц прошло за это время через отверстие. А сколько их всего вылетело за 10 минут из «кончика иголки»?
Расчет очень прост. Альфа-частицы летят из образца равномерно во все стороны. Значит, во сколько раз площадь отверстия меньше площади всей сферы (диаметром 1,5 м), во столько же раз число разлетевшихся частиц больше числа подсчитанных вспышек. Площадь отверстия (она равна πd2/4; вы, наверное, уже знаете эту формулу) легко сосчитать по его диаметру d; она равна 1,23 мм2. Площадь сферы радиусом r (она равна 4πr2), выраженная в квадратных миллиметрах, получается огромной: 2,83·107 мм2 — в 23 миллиона раз больше площади отверстия. Значит, во столько же раз больше альфа-частиц вылетело из образца, т. е. 49·23·106 = 1,13·109 — больше миллиарда! В этом и заключалась хитрость опыта: регистрировалась лишь ничтожная часть частиц, испускаемых радиоактивным источником. Теперь, зная массу радия в образце и время измерения, совсем просто вычислить, сколько альфа-частиц испускает за 1 секунду 1 грамм радия. Оказалось — очень много: 1,13·109/(600·0,055·10–3) = 3,42·1010 — больше 34 миллиардов! Позднее это значение было несколько уточнено: оно оказалось чуть больше — 37 миллиардов. В течение длительного времени эта константа была основной единицей измерения радиоактивности; ее назвали кюри — в честь Марии и Пьера Кюри, французских ученых, открывших в 1898 году радий и выделивших его в чистом виде.
А как с помощью радия определили число Авогадро? Это уже другая история. Еще в 1895 году английский химик Уильям Рамзай (1852–1916), который прославился открытием в воздухе аргона, обнаружил в минерале клевеите другой благородный газ — гелий. Впоследствии значительные количества гелия были обнаружены и в других минералах — но только в тех, которые содержали уран и торий. Это казалось удивительным и странным — откуда в минералах мог взяться редкий газ? Когда Резерфорд начал исследовать природу альфа-частиц, испускаемых радиоактивными минералами, стало ясно, что гелий является продуктом радиоактивного распада. Оказалось, что альфа-частицы — это фактически те же атомы гелия, только без электронов и летящие с огромной скоростью. Когда они тормозятся, сталкиваясь с другими атомами, натыкаясь на стенки сосуда, они захватывают электроны и превращаются в атомы гелия. Значит, каждую секунду один грамм радия выделяет десятки миллиардов атомов гелия. Выделяется гелий и другими радионуклидами, в том числе продуктами распада радия. Поэтому минералы, содержащие радиоактивные элементы, за миллионы лет своего существования выделяют значительные количества гелия. Частично гелий попадает в атмосферу, а частично «застревает» в минералах и может быть там обнаружен чувствительными методами.
Идея эксперимента стала Резерфорду ясна: надо измерить, какой объем гелия выделяется известным количеством радия за определенный срок и исходя из этого объема рассчитать число молей гелия. К тому времени было уже хорошо известно, что 1 моль газа при нормальном атмосферном давлении и температуре 0°C занимает объем 22,4 литра.
В 1911 году Резерфорд — на этот раз с молодым американским физиком Бертраном Болтвудом (1890–1927) — приступил к решающему эксперименту. Для опыта взяли соль радия, которую одолжила Резерфорду Венская академия наук. Соль содержала 193 мг чистого радия — огромное, особенно по тем временам, количество, стоившее громадных денег. Из-за начавшейся в 1914 году войны Резерфорд не смог вернуть радий в Австрию. Лишь в конце 20-х годов Кембриджский университет, где работал Резерфорд, согласился выплатить за предоставленный радий 3000 фунтов стерлингов — с рассрочкой платежа на 6 лет.
Но вернемся к опыту Резерфорда и Болтвуда. Они насыпали радиоактивную соль в платиновую капсулу с дырочками в крышке, а капсулу поместили в стеклянную трубку из специального тугоплавкого стекла, в которой был создан вакуум. В таком виде прибор оставили на 83 дня. Решив, что времени прошло достаточно, ученые нагрели стеклянную трубку вместе с платиновой капсулой до красного каления; при этом из соли выделился газообразный гелий, количество которого было точно измерено. Расчеты показали, что каждый день соль радия выделяла 0,0206 мм3 гелия (или 0,107 мм3 в расчете на 1 г радия). Зная скорость испускания альфа-частиц радием и учитывая, что альфа-частицы (и, следовательно, атомы гелия) образуются не только из радия, но также из продуктов его распада, ученые рассчитали число атомов гелия в одном моле этого газа. Оно оказалось равным 6,1·1023. В те годы это было самое точное значение числа Авогадро (современное значение 6,0221415·1023). Так опыты с радием помогли подсчитать число атомов в известном количестве вещества. Это было замечательное достижение человеческого разума.
В последующие годы были и другие, не менее выдающиеся достижения в этой области. Они привели к значительным успехам во многих отраслях науки и техники, но одновременно — к взрывам ядерных бомб, к авариям на атомных электростанциях. Но так было всегда: любые достижения науки можно использовать как на пользу, так и во вред человечеству. Как писал Д. И. Менделеев, изобретение Нобелем динамита, конечно, привело к значительному увеличению взрывной силы мин и снарядов; однако ученый надеялся, что мирное использование новых взрывчатых веществ окажется для человечества более важным, чем их военное применение. Эти слова великого химика не потеряли своей актуальности и в наши дни.