Создан диод из девяти атомов углерода

Нонадиин-1,8

Рис. 1. Химическое строение нонадиина-1,8 (слева) и схема строения монослоя, который он образует на поверхности гидрированного кремния (справа). В названии этого вещества нона- показывает, что оно содержит 9 атомов углерода, ди-ин — что две из восьми связей между этими атомами — тройные; 1,8 указывает на то, что это связи между первым и вторым и восьмым и девятым атомами. Рисунок из обсуждаемой статьи в Nature Communications

Испанские ученые показали, что молекулу простого органического вещества нонадиин-1,8 можно использовать как молекулярный диод. Этот самый маленький в мире диод к тому же оказался очень эффективным, и в отличие от ранее созданных молекулярных диодов он способен работать при комнатной температуре.

Одно из главных направлений в развитии электроники — миниатюризация. Электронные схемы и их компоненты становятся всё меньше и меньше. Однако уменьшить привычные для нас электронные схемы на основе кремния, германия и других полупроводниковых материалов (см. Полупроводники) можно лишь до определенного предела. Поэтому вот уже пару десятков лет интенсивно ведутся разработки в области молекулярной электроники, в которой электронными компонентами служат отдельные молекулы. Уже известны молекулярные провода, молекулярные логические элементы, молекулярные диоды и молекулярные транзисторы.

Исследователи из Барселонского университета, работающие в группе Исмаэля Диеса-Переса (Ismael Díez-Pérez), смогли продемонстрировать, что одна молекула нонадиина-1,8 на кремниевой подложке работает как диод (рис. 1). Эта молекула состоит всего лишь из девяти атомов углерода и двенадцати атомов водорода (С9Н12). Таким образом, созданный диод очень маленький даже по меркам молекулярной электроники.

Возможно, некоторые читатели, прочитав слово «диод», представили себе маленькие светящиеся огоньки — светоизлучающие диоды. Однако в данном случае имеется в виду не источник света, а устройство, пропускающее электрический ток в одном направлении и блокирующее его протекание в противоположном. Такие устройства — один из базовых компонентов электронных схем.

Нонадиин-1,8 относится к классу терминальных диинов — молекул, содержащих две тройные связи углерод-углерод, которые расположены на противоположных концах углеродной цепи. Такие терминальные диины были синтезированы во второй половине ХХ века и находили применение, например, в получении синтетических полимеров. На макроскопическом уровне ни нонадиин-1,8, ни родственные по структуре соединения не проводят электрический ток. Исследователи использовали молекулу углеводорода с двумя тройными связями не как обычный электрический контакт, а как контакт для туннельного тока, который возникает при «проскоке» носителя заряда между электродами — туннельном переходе (наиболее известно туннелирование электрона).

Дииновый молекулярный диод закрепляется на частично гидрированной — содержащей связи Si–H — поверхности кремния. Происходит это в результате инициируемой ультрафиолетовым излучением реакции гидросилилирования — присоединения связи Si–H к кратной связи на одном из концов молекулы нонадиина. (Эта реакция протекает аналогично изучаемым в школе реакциям присоединения водорода Н–Н или хлороводорода H–Cl к двойным или тройным связям.) Вторая тройная связь — на другом конце молекулы диина — остается свободной для возможности электрического контакта с внешними электронами. Это и позволяет исходно симметричной молекуле вести себя по-разному с электронами, движущимися в противополжных направлениях — к подложке или от нее.

Для проверки работы диода исследователи разработали особую методологию эксперимента, которую они назвали «мерцающее тестирование» («blinking test»). Поверхность кремния с закрепленными на ней молекулами нонадиина-1,8 изучали с помощью сканирующего туннельного микроскопа. Когда изготовленный из золота зонд микроскопа контактировал с молекулой нонадиина (рис. 2, а), электрическая цепь замыкалась, при этом регистрировалось скачкообразное увеличение силы тока — «мерцание» (рис. 2, b). Периодически изменяя полярность напряжения, исследователи подтвердили одностороннюю проводимость диода (рис. 2, с).

Схема эксперимента

Рис. 2. Схема эксперимента. a — молекула нонадиина-1,8 участвует в замыкании и размыкании электрической цепи между золотым зондом микроскопа и кремниевой подложкой. b — регистрация «мерцания», возникающего в результате связывания молекулярным диодом двух электродов при напряжении в  −0.8 В. На верхнем графике видны скачкообразное увеличение силы туннельного тока, возникающее при контакте зонда микроскопа с молекулой, незначительные (сравнимые с ошибкой измерения) колебания силы тока в момент контакта зонд–молекула и резкое снижение силы тока до исходного значения при потере контакта. c — односторонняя проводимость диода при изменении напряжения от −2 до +2 В. Видно, что при –2 В (нижний график) наблюдается резкое увеличение силы туннельного тока (верхний график) до 120 микроампер (весь пик, иллюстрирующий рост силы тока, просто не поместился на иллюстрации), смена полярности и потенциал +2 В позволял регистрировать ток силой только в 30 наноампер — в 4000 раз меньше. Рисунок из обсуждаемой статьи в Nature Communications

Начав работу с изучения поверхности кремния, покрытой сотнями или десятками молекул нонадиина-1,8, за счет увеличения точности сканирования и измерений исследователям удалось быстро адаптировать метод для изучения электрического контакта с участием одной отдельно взятой молекулы. Интересно, что близкие по строению молекулы, например, нонин-1, который обладает только одной тройной связью, не могут выступать в качестве электрических контактов. Вероятно, вторая тройная связь нонадиина или связанный с ней атом водорода (образующий с двумя последними атомами углерода прямую линию C≡C–H) играет роль своеобразной антенны, облегчающей туннельный перенос электрона.

Созданный диод интересен не только размером — его эффективность уникальна для электронных компонентов такого типа. Эффективность диодов обычно определяется значением коэффициента выпрямления — отношением прямого тока к обратному току. Для нового диода коэффициент выпрямления достигает примерно 4000. Это на два порядка больше коэффициента выпрямления первого молекулярного диода, полученного в 2009 году при участии самого Исмаэля Диеса-Переса, а также Ивана Олейника из Института химической физики им. Н. Н. Семенова РАН (I. Díez-Pérez et al., 2009. Rectification and stability of a single molecular diode with controlled orientation). Помимо этого диод из нонадиина-1,8 обладает высокой устойчивостью — он может работать при комнатной температуре, в то время как диоды 2009 года (несколько полученных тогда молекул с односторонней проводимостью представляли собой различные комбинации ароматических колец) могли работать только при температуре, близкой к абсолютному нулю (около 10 К).

Высокая эффективность и устойчивость нового диода позволяет говорить о том, что объединение возможностей органической химии и наработанных подходов к работе с микросхемами из кремния может послужить основой для настоящего прорыва в молекулярной электронике. Конечно, до массового применения таких молекулярных диодов еще далеко — несмотря на то, что новый диод значительно лучше своих предшественников, до применения таких устройств в электронных схемах нужно увеличить и термостабильность, и стабильность по току, и время жизни. Тем не менее исследователи уверены, что продлить время стабильной работы молекулярного диода от нескольких секунд до нескольких месяцев — вполне реальная перспектива. В любом случае результаты изучения молекулярного диода окажутся полезными уже в ближайшей перспективе — разработанный и успешно использованный «метод мерцания» может пригодиться для изучения закономерностей переноса электрического заряда и для других систем, в которых поверхность металла или полупроводника будет модифицирована органическими молекулами различного строения.

Источник: Albert C. Aragonès, Nadim Darwish, Simone Ciampi, Fausto Sanz, J. Justin Gooding & Ismael Díez-Pérez. Single-molecule electrical contacts on silicon electrodes under ambient conditions // Nature Communications. 2017. 8. DOI:10.1038/ncomms15056.

Аркадий Курамшин


12
Показать комментарии (12)
Свернуть комментарии (12)

  • Altaisky  | 26.05.2017 | 21:46 Ответить
    "Возможно, некоторые читатели, прочитав слово «диод», представили себе маленькие светящиеся огоньки"
    Ну зачем же так про читателей Элементов думать.
    Ответить
    • feanoturi > Altaisky | 27.05.2017 | 10:45 Ответить
      Ну не про всех же: "некоторые читатели" ;-). А если серьезно - то замечаю, что даже после курса физики у многих современных студиозов-химиков первая ассоциация со словом "диод" не "односторонняя проводимость", а "светоиспускающий" aka LED.
      Ответить
    • Teodor77 > Altaisky | 09.06.2017 | 15:38 Ответить
      Вообще-то об излучении этого диода ничего не сказано. Вполне возможно, что при прохождении тока он и излучает свет. Почему бы и нет? И приложение для такого светящегося диода (if any exists) вполне перспективные.
      Ответить
  • VladNSK  | 26.05.2017 | 22:40 Ответить
    Интересно, во сколько раз этот молекулярный диод меньше диода на плате современного процессора?
    Ответить
    • another_user > VladNSK | 27.05.2017 | 00:17 Ответить
      Про диод не скажу, но характерный размер полевого транзистора при современном интеловском 14 нм процессе - 42 нанометра.
      Ответить
      • feanoturi > another_user | 27.05.2017 | 10:38 Ответить
        Если брать контурную длину нонадиина (сумму длины шести простых и двух тройных связей углерод-углерод, то получается около 1,15 нанометров), а ширина и того меньше - 0,11 нанометров (длина СН связи)
        Ответить
        • VladNSK > feanoturi | 27.05.2017 | 11:00 Ответить
          Получается, что на два-три порядка меньше. Спасибо!
          Ответить
          • protopop > VladNSK | 27.05.2017 | 20:44 Ответить
            Всего-то! Если разобраться - это же просто чудо! Обыкновенная УФ-литография, без всяких там биотехнологий, позволяет делать функциональные узлы, состоящие из считанного количества атомов! А на подходе 7-нм литография, и имеются планы на 4-нм. Дальше - уже ядерная физика. Восхитимся же мощью человеческого гения, который уже в состоянии конкурировать со Всевышним (если Он есть); подтверждая тем гипотезу о том, что Его, по всей видимости, нет...
            Ответить
            • VICTOR > protopop | 02.06.2017 | 14:05 Ответить
              7 нм - в лучшем случае через 4 года после 14 нм. Любые планы скажем перевести видеокарты на 5 нм - тогда уже кусочки кремния могут иметь далекие от обычного полупроводника параметры.
              Ответить
        • Олег Чечулин > feanoturi | 01.06.2017 | 04:07 Ответить
          Эта длина с учётом углов между связями?
          Ответить
  • Fangorn  | 28.05.2017 | 00:50 Ответить
    Верно ли я понял, что односторонняя проводимость возникла за счет того, что электрон способен вырваться из золотого электрода и поглотиться молекулой нонадиина - но не наоборот?
    Ответить
    • Олег Чечулин > Fangorn | 01.06.2017 | 04:15 Ответить
      А что будет, если вместо 9 атомов углерода взять 7?
      Ответить
Написать комментарий
Элементы

© 2005–2025 «Элементы»