Владимир Клиньшов

Булева алгебра — основа работы компьютера

Рис. 2. «Водопроводная модель» операций булевой алгебры

Рис. 2. «Водопроводная модель» операций булевой алгебры

Булева алгебра (названа в честь английского математика XIX века Джорджа Буля) рассматривает величины, принимающие только два значения — 0 или 1. Значение булевой величины можно представлять как ложность или истинность какого-либо утверждения (0 — ложь, 1 — истина). Поэтому с такими величинами можно производить различные операции — так же, как мы оперируем с утверждениями при рассуждениях. Основные операции — это И, ИЛИ, НЕ. Например: «я возьму зонт», если «пойдет дождь» И «за мной НЕ заедет друг на машине». Если обозначить через С утверждение «я возьму зонт», А — «пойдет дождь» и В — «за мной заедет друг», то С = А И (НЕ В). Выполнением подобных операций и занимается процессор компьютера.

Выполнение логических операций можно проиллюстрировать на наглядной физической модели «водопровода». Представим утверждения, над которыми производятся операции, в виде вентилей на трубах (открытый вентиль — утверждение истинно, закрытый — ложно). Результат операции представим в виде крана, из которого вода может либо течь (истина), либо не течь (ложь). На рис. 2 изображены системы труб, реализующие основные логические операции. Например, рассмотрим операцию И: С = А И В (рис. 2а). Вентили А и В установлены на трубе последовательно, поэтому вода из крана С течет, только если они оба открыты. Если же установить вентили на две параллельные трубы, соединяющиеся в одну, то такая система будет выполнять операцию ИЛИ: если хотя бы один из вентилей А или В открыт, вода из крана С потечет, т. е. С = А ИЛИ В (рис. 2б). На рис. 2в представлена система, выполняющая операцию НЕ: если вентиль А закрыт, то вода протекает в кран В, если же он открыт, то вся вода стекает в «запасную» трубу, и через кран В не течет, т. е. В = НЕ А.

Можно ли перенести те же системы из области гидродинамики в область электроники, то есть создать электронные логические схемы? Ясно, что для этого понадобятся устройства, подобные вентилям на трубах, которые в зависимости от установленного положения либо пропускают воду по трубе, либо нет. «Электронные вентили» должны обладать подобными свойствами, т. е. регулируемой проводимостью электрического тока. Оказывается, именно триод и транзистор могут выполнять функции вентиля в электрической схеме. Чтобы понять, как это возможно, надо разобраться в физических принципах работы триода и транзистора.


5
Показать комментарии (5)
Свернуть комментарии (5)

  • sanit  | 27.03.2006 | 19:30 Ответить
    Да уж! В 1949 г. журнал популярная механика опубликовал прогноз:
    В будующем компьютеры могут весить не более полутора тонн!!!
    :)))
    Ответить
    • WaLLik > sanit | 30.07.2007 | 21:45 Ответить
      это точно будущее за "живыми"компьютерами ведь мозг выполняет больше вычислительных операций чем компьютер мы до сих пор не знаем как он работает и какой логикой все считает.....:)
      Ответить
  • Anastasija  | 18.04.2009 | 09:46 Ответить
    Отличная статья. Можно я помещу её на своём сайте http://fizikadetiam.ucoz.com/index/ ? У меня там есть глава "Для умников и умниц". Есть ведь ещё пока интересующиеся дети. Спасибо. Анастасия
    Ответить
  • samara  | 28.12.2010 | 17:32 Ответить
    под квантовыми компьютерами понимают совсем не счёт на основе целых молекул, а счёт на основе квантовой неопределённости кубитов и "запутаности" обьектов-ячеек.
    имхо: а будуещее за системами с недвоичным счётом (4/8/10/16 градаций сигнала например)
    Ответить
  • vp_lisin  | 13.02.2011 | 19:49 Ответить
    Замечание на фразу:
    "Качественное изменение ЭВМ произошло после еще одного эпохального открытия физики — изобретения в 1947 году Джоном Бардином, Уолтером Браттейном и Уильямом Шокли полевого транзистора."
    -- Они изготовили не полевой, а биполярный транзистор. Первый полевой
    был изготовлен в 1960 г., хотя запатентован лет на 25-30 раньше.
    Ответить
Написать комментарий
Элементы

© 2005–2025 «Элементы»