Самый простой способ быстро увлечься химией — увидеть, как смешанные в правильном соотношении невзрачные серые порошки, подожженные искрой, дают ослепительную вспышку и миниатюрный «ядерный гриб». На фото — реакция окисления цинковой пыли элементарной серой. Эту красочную реакцию впервые провели французские химики Рене Кусталь (René Coustal) и Франсуа Преве (François Prévet) в 1929 году.
Цинк — не самый активный металл, так что для начала его реакции с серой требуется нагрев до нескольких сот градусов или контакт с открытым пламенем (Будьте осторожны! Чтобы не обжечь руки, лучше поджигать смесь бикфордовым шнуром). Но когда реакция уже началась, из-за огромной удельной поверхности частиц цинковой пыли она протекает очень бурно, с выделением тепла и света. В ходе реакции образуется сульфид цинка (ZnS), мельчайшие частицы которого и формируют это красивое облако на фото.
В природе сульфид цинка встречается в виде минерала сфалерита, также известного как «цинковая обманка» — с древности этот минерал привлекал внимание людей своим необычным металлическим блеском. Уже в 2500 году до н. э. плавление сфалерита с самородной медью дало человечеству важнейший сплав меди и цинка — латунь, во многом превосходивший уже активно используемую бронзу (сплав меди с оловом).
В наши дни сульфид цинка в промышленных масштабах получают менее эффектным способом — реакцией оксида цинка (ZnO) с сероводородом (H2S) при нагревании:
ZnO + H2S → ZnS + H2O
Сульфид цинка имеет весьма необычные применения в технике. Раньше его активно использовали для изготовления кинескопов телевизоров — люминофоры на его основе светятся под воздействием электронного пучка, создавая изображение на экране. По сравнению с другими подобными соединениями, часто содержащими дорогие редкоземельные элементы, сульфид цинка дешевле и проще в производстве.
В наши дни монокристаллы (крупные кристаллы, выращенные из раствора или расплава) сульфида цинка используются как сцинтилляторы для регистрации ионизирующих излучений. Сцинтилляторы — это вещества, испускающие видимый свет под воздействием высокоэнергетических заряженных частиц (альфа- и бета-частицы) или гамма-квантов. При этом интенсивность их свечения пропорциональна энергии детектируемого излучения, что позволяет не только зарегистрировать ионизирующее излучение, но и получить его энергетический спектр, благодаря чему можно качественно и количественно определить наличие радиоактивных изотопов. Так, на одной лабораторной работе по ядерной физике я определял с помощью сцинтилляционного гамма-спектрометра содержание радиоизотопа калия-40 (40K) в самом обычном банане! Содержание этого радиоактивного изотопа в бананах измеряется микрограммами, но этот точнейший метод позволяет определить даже такие следовые количества.
Фото © Максим Исаченков.
Максим Исаченков
Облако сульфида цинка, образующееся в ходе реакции. Фото © Максим Исаченков