К началу XXI века конкурирующие гипотезы зарождения жизни загнали друг друга в патовую ситуацию. Приверженцы Мира РНК доказывали свою правоту экспериментами с саморепликацией РНК без участия ферментов, молекулами РНК с функциями катализатора и тем фактом, что именно РНК образует основу одного из самых важных компонентов клетки — рибосомы. Те, кто считал первичными протоклетки, указывали на легкость их формирования и некоторое их сходство с настоящими клетками. В то же время сторонники Майкла Рассела радовались открытию щелочных гидротермальных источников — ведь оно подтверждало ключевую догадку, лежащую в основе их гипотезы.
Была еще идея о белках в качестве первоосновы жизни, но, несмотря на то, что аминокислоты действительно являлись одним из главных участников экспериментов в области пребиотической химии, в конечном счете это предположение отошло на задний план.
Тем не менее все три гипотезы обладали серьезными недостатками. Приверженцы Мира РНК так и не сумели показать, что нуклеотиды (строительные блоки РНК) могли возникнуть на древней Земле сами по себе. Полученные Пьером Луиджи Луизи и Дэвидом Димером протоклетки имели очень ограниченные возможности. Рассел же не смог найти доказательства того, что жизнь была способна использовать естественный градиент протонов, возникающий в щелочных гидротермальных источниках.
И все же эти трудности не помешали ученым продвигать свои горячо любимые гипотезы: споры на конференциях обыкновенно шли на повышенных тонах. Дело в том, что люди особенно горячо отстаивают свою правоту именно тогда, когда в глубине души ощущают неуверенность. Сторонний наблюдатель тотчас бы заметил несовершенство всех трех лидирующих гипотез. Назрела потребность в новом подходе, суть которого не сводилась бы к тому, чтобы решить все при помощи какого-то одного «всемогущего» вещества. Ученым следовало смириться с царившим на Земле хаосом и заняться созданием чего-то динамичного и потому способного стать живым. В наши дни сторонники этого нового взгляда добились целого ряда потрясающих экспериментальных успехов.
Эта история началась в конце 1990-х, когда, несмотря на весь раздрай, двое представителей враждующих лагерей смогли найти точки соприкосновения. Примирение, легшее в основу этого маленького альянса, инициировал Пьер Луиджи Луизи, который изучал простые липидные везикулы (см. главу 9). Осознавая ограниченные возможности протоклеток, Луизи и его сотрудники в 1994 году решили создать что-то посложнее1. Они собрали вместе РНК, фермент, необходимый для ее репликации, а также запас нуклеотидов и водворили все это внутрь везикулы.
Эти протоклетки нового типа, по заверениям их создателей, стали «ступенью на пути к созданию модели синтетической клетки», то есть «такой, в которой репликации мембраны и находящейся внутри нее РНК происходят одновременно». Иными словами, исследователи решили объединить гипотезу Мира РНК с основанной на везикулах гипотезой «вначале был компартмент» и от попыток заставить какую-то одну из ключевых систем живого взвалить на себя все функции перейти к попыткам добиться этого от работающих вместе двух ключевых систем живого.
Такие протоклетки скорее всего не имеют ничего общего с ситуацией на юной Земле. Копирующие РНК ферменты так же сложны, как и большинство этих молекул, и они не могли возникнуть в современном виде одним махом. Но, повторимся, все это служит лишь доказательством принципиальной возможности. Итак, две казавшиеся несовместимыми гипотезы оказались объединены, хотя и в довольно грубом виде.
Вскоре этой идеей загорелся Джек Шостак из Медицинской школы Гарварда. Внешне Шостак напоминает актера Чарльза Хоутри, но, к счастью, на этом их сходство заканчивается: если Хоутри был алкоголиком со скверным нравом, то Шостак — человек мягкий и пользующийся всеобщей симпатией. Он канадец, рожденный в Лондоне, а его любовь к науке уходит корнями в раннее детство2. Отец помог ему обустроить химическую лабораторию в подвале их дома, а мать снабжала «особенно опасными реагентами», которые заимствовала на работе. Как-то раз юный Шостак проводил эксперимент и выпустил слишком много водорода, что привело к «впечатляющему взрыву, вследствие которого стеклянная трубка вонзилась в деревяную рейку на потолке».
Этот энтузиазм в 1968 году привел пятнадцатилетнего (!) Шостака в Университет Макгилла. Однако выбор научного направления давался ему с трудом, и определился он лишь в 1980 году, после знакомства с биологом Элизабет Блэкберн. Блэкберн первой обнаружила, что на концах длинных ДНК клеток имеются повторяющиеся участки. Эти защитные кончики сейчас называют теломеры — по-видимому, они играют важную роль в процессах старения. Шостак начал сотрудничать с Блэкберн, и со временем им удалось доказать, что теломеры защищают остальную часть ДНК от разрушения. Спустя три десятилетия Шостак, Блэкберн и их коллега Кэрол Грейдер удостоились общей Нобелевской премии.
Однако еще в начале 1980-х годов, в то самое время, когда готовилась к публикации статья о теломерах, Шостак заинтересовался проблемой происхождения жизни. В то время Томас Чек и Сидни Олтмен как раз открыли каталитические молекулы РНК — рибозимы, ставшие важным свидетельством того, что жизнь в начале своей истории сильно зависела от РНК (см. главу 8). Шостак решил, что изучение рибозимов — это «по-настоящему круто», и потому в 1990-е он был уже в рядах приверженцев Мира РНК3.
Шостак стал участвовать в конференциях, посвященных проблеме зарождения жизни. На одной из них он познакомился с Пьером Луиджи Луизи. Нельзя сказать, что эта встреча ознаменовалась их идейным сближением. Луизи являлся приверженцем гипотезы «вначале был компартмент», в то время как Шостак был своего рода партизаном, сражавшимся за Мир РНК. Их беседы то и дело оборачивались спорами. Но спустя годы каждый пришел к выводу, что его собеседник в чем-то прав. Лишенная генов клетка остается, если можно так выразиться, пустой, поскольку лишена возможности передавать наследственную информацию своим потомкам и участвовать в эволюции. Гены же без клеток оказываются «голыми» и не могут удерживаться вместе с другими молекулами, с которыми должны работать сообща.
В 2001 году ученые пришли к выводу, что первая жизнь имела оба этих компонента. Скорее всего это означало РНК в упаковке везикулы4. Но самое важное здесь — это способность обоих компонентов копировать себя. Далее Шостак и Луизи решили, что эти компоненты должны каким-то образом функционировать вместе. В самом простом случае РНК может быть рибозимом, создающим те самые липиды, из которых состоит мембрана. В этом случае получается «устойчивая и способная к независимому самокопированию система, которая может стать объектом дарвиновского эволюционного процесса», — утверждают ученые. Несмотря на свою простоту, такая система является «по-настоящему живой». «Получение простых живых клеток» оказалось, таким образом, «достижимой целью».
Мысль поместить генетический материал внутрь протоклетки была не то чтобы новой. Манфред Эйген предлагал это еще в 1971 году, когда описывал свои сети «гиперциклов» из реплицирующихся РНК и белков (см. главу 6)5. Эйген полагал, что такие биологические молекулы должны были «спрятаться в компартмент», для того чтобы в дальнейшем иметь возможность использовать приобретенные ими мутации. «В итоге шансы на выживание имели те системы, которые смогли приобрести упаковку компартмента и индивидуальные черты», — утверждает он.
И все же — несмотря на заметные разногласия между представителями враждующих лагерей — Шостаку и Луизи удалось в 2001 году сформулировать позиции, сильно отличавшиеся от тех, что оба отстаивали раньше. Исследователи решили отказаться от прежних односторонних взглядов и развивать новый «гибридный» подход, согласно которому два ключевых компонента жизни возникли одновременно. Шостак вскоре взялся «доказать слова на деле» и вместе со своей научной группой начал экспериментировать с протоклетками. Спустя три года он объявил о первом крупном успехе.
Это было замысловатое исследование, включавшее в себя ряд связанных экспериментов. Ученые начали с того, что принялись искать простой способ получения протоклеток из липидов. Как мы помним из главы 9, липиды самопроизвольно собираются в капли, называемые мицеллами. Однако у мицелл нет внутренней полости, в которой могла бы разместиться РНК, поэтому первым делом их следовало превратить в имеющие полость везикулы. Преобразование одних в другие шло неохотно, но потом исследователи нашли ускоряющий его катализатор — монтмориллонит. (Наконец-то нам открылся весь спектр возможностей этого замечательного глинистого минерала.) Шостак и его сотрудники показали, что добавление зерен монтмориллонита ускоряет превращения мицелл в везикулы в сотни раз. Везикулы становились заметны менее чем через минуту и нередко содержали внутри себя захваченное зерно монтмориллонита.
Последнее обстоятельство оказалось самым существенным. Из главы 8 мы помним, что монтмориллонит ускоряет образование молекул РНК и их удлинение, поскольку те располагаются на поверхности минерала и растут на ней. Получая описанным выше способом везикулы с зернами монтмориллонита внутри, команда Шостака создала идеальное хранилище для РНК. Далее ученые добавляли РНК к зернам монтмориллонита и использовали эти последние, чтобы вызвать образование везикул. Оказалось, что каждая такая везикула несла в себе зерно монтмориллонита, покрытое РНК. Важно также, что молекулы РНК из них «не вываливались».
Выглядело все весьма элегантно: один-единственный минерал помог ученым создать на основе самого скудного набора соединений более сложные протоклетки с нуклеиновыми кислотами внутри.
Следующие эксперименты показали, что протоклетки также способны расти за счет поглощения липидов из окружающей среды. Этот процесс оказался довольно привередливым: он происходил только при медленном добавлении новых мицелл. И все-таки он был возможен, что и продемонстрировал в 1990-е годы Луизи.
Эта же исследовательская группа сумела заставить протоклетки создавать похожие на себя «дочерние» копии — в ходе процесса, напоминающего деление: крупные везикулы продавливали через очень мелкие отверстия в ткани, придавая им форму сосиски. Полученные «сосиски» оказались неустойчивыми и быстро распадались на множество мелких везикул, так что на обычное деление клетки (с образованием двух дочерних) это походило уже не слишком, но важнее здесь то, что везикулы в процессе растеряли не всю свою РНК. В последнем эксперименте из этой серии протоклетки подвергли повторяющимся циклам роста и деления — подобное проделывают с поддерживаемой в лаборатории культурой бактерий.
В протоклетках Шостака не было ни белков, ни ферментов, ни прочей обычной для клетки машинерии. И тем не менее их сходство с живым потрясает. «Данные эксперименты стали принципиальным доказательством того, что рост и деление везикул обусловлены простыми физико-химическими явлениями и не требуют участия какой-либо сложной биохимической машинерии», — таков был вывод ученых. Вообще-то, они явно себя недооценили. Как мы убедились в главах 4 и 6, современные клетки имеют очень сложное устройство — в них работают сообща тысячи различных компонентов. А протоклетки Шостака — несмотря на то, что они состоят всего из нескольких соединений, — воспроизводят многие фундаментальные свойства живого. Как известно, Нильс Бор говорил, что тот, кого не испугала квантовая механика, совершенно ее не понял. То же можно сказать и об экспериментах Шостака: с учетом того, насколько просто устроены протоклетки Шостака, их сходство с настоящими поистине поражает.
Статья с этими результатами была опубликована в 2003 году, спустя полвека после проведения Миллером его эпохального эксперимента, который показал возможность самопроизвольного образования биологических молекул6. Это были пять десятилетий застоя и вязких непродуктивных споров. Но теперь они подошли к концу и наука о зарождении жизни быстро продвигается вперед. Причем это касается как экспериментальных исследований, так и теории.
В течение десяти последующих лет ученые убедились, что их протоклетки еще более универсальны, чем казалось вначале7. Всего через год они продемонстрировали, насколько слаженно могут работать РНК и его липидное пристанище. Ранее Шостак и Луизи предлагали связать их воедино за счет того, что рибозимы внутри создавали новые липиды для оболочки. Но теперь группа Шостака придумала кое-что более простое.
Когда в везикуле становится слишком много РНК, давление на мембрану возрастает и она растягивается, как полный продуктов полиэтиленовый пакет. Шостак и его сотрудники выяснили, что подобные «растянутые» протоклетки могут забирать липиды у соседних везикул, которые не содержат РНК. Такие протоклетки по сути конкурируют между собой за «строительный материал», то есть за липиды. Победителем из этой борьбы выходит тот, в ком больше РНК. Законы физики мембран стимулируют и рост наполненных РНК везикул, и уменьшение пустых везикул. По мнению ученых, это простое соревнование «могло сыграть важную роль в запуске эволюции по Дарвину»8. В частности, протоклетки, содержащие РНК со способностью быстрее копировать себя, и сами растут быстрее.
Вдобавок протоклетки оказались очень устойчивы. Они выдерживали и охлаждение до 0°C, и нагрев до 100°C9. Из этого следует, что они могли бы существовать в гидротермальных источниках — как на суше, так и в океане. Мало того: нагревание открыло их новые возможности. В горячем виде они свободно пропускали внутрь небольшие молекулы вроде нуклеотидов — при нормальной температуре это невозможно. Получается, что в нагретом состоянии протоклетки могли «питаться», вбирая в себя новый материал.
И все же была тут одна проблема. Как именно могло происходить деление протоклеток, то есть, по сути, их размножение?10 В исходном эксперименте протоклетки необходимо было продавливать через крошечные отверстия и тем самым изменять их форму, однако это выглядит искусственно и вряд ли действительно происходило миллиарды лет назад. К тому же при таком продавливании протоклетки теряли часть своих РНК. Требовалось придумать что-то другое, получше.
Для решения этой проблемы было предложено два остроумных способа, причем предложено одним и тем же человеком — студентом Тинг Чжу. В 2009 году он и Шостак получили протоклетки, которые имели несколько слоев мембран и потому напоминали луковицы11. Когда им «скармливали» липиды, они превращались в более крупные вытянутые цепочки. Такие цепочки оказались хрупкими, поэтому даже небольшое движение окружающего раствора разрушало их, создавая десятки новых протоклеток, сохраняющих при этом свое содержимое. А спустя три года Чжу придумал и второй способ12: сначала везикулам-«сосискам» давали определенные небольшие молекулы, а потом подвергали везикулы действию света. Это запускало химические реакции, из-за которых везикулы начинали делиться. Так что протоклетки, способные к независимым росту и делению, теперь не кажутся чем-то нереальным13.
Добиться саморепликации РНК в составе таких протоклеток оказалось посложнее — ведь надо было обойтись без сложного фермента. При этом нуклеотидам предстояло выстроиться в ряд вдоль имеющейся молекулы РНК и соединиться, образовав новую цепочку. Орджел и другие исследователи сражались с проблемой такой «неферментной репликации» еще с 1980-х годов. Теперь же Шостаку предстояло добиться этого внутри протоклетки.
Он и его студентка Катажина (Кейт) Адамала вплотную занялись этим вопросом в 2012 году. Сложностей на их пути могло возникнуть множество: например, нуклеотиды норовят иногда присоединиться к РНК не той стороной14. И тем не менее уже на следующий год были получены первые результаты15.
Ученые знали, что РНК копирует себя быстрее в присутствии ионов магния. Это выглядит правдоподобно: магний относится к распространенным элементам. Но, к сожалению, он также разрушает липидную мембрану протоклеток. Адамала и Шостак решили эту проблему, добавив цитрат — соединение, которое очень похоже на лимонную кислоту из лимонов. Цитрат присутствует во всех живых организмах, а в этом опыте он требовался для связывания магния. Благодаря цитрату магний мог ускорять копирование РНК, не нарушая при этом структуру протоклеток. В итоге сочетание магния и цитрата сделало возможным саморепликацию РНК в липидной упаковке.
Позже оказалось, что железо ускоряет самокопирование РНК даже лучше, чем магний. Это в 2018 году выяснил Шостак в ходе своей совместной — с Адамала (к тому времени уже возглавлявшей собственную лабораторию) и еще несколькими коллегами — работы16. Такой факт особенно воодушевляет, если учесть, что ученые предполагают в океанах молодой Земли обилие железа. Сейчас его меньше, поскольку в реакции с ним активно вступает кислород из атмосферы, — но, как мы помним, исходно кислорода на Земле не было.
Важно отметить, что РНК в протоклетках — это еще не гены. В отличие от нуклеиновых кислот в современных организмах, такие РНК ничего не кодируют. Однако весь смысл последовательности РНК состоит именно в неких записанных в ней полезных свойствах. Так вот: у протоклеток Шостака есть РНК, но нет генов. Это, разумеется, не лишает эксперименты Шостака ценности — ведь находящаяся на своем месте РНК позднее может измениться и начать что-то кодировать. Вот и специалист в области пребиотической химии Джон Сазерленд (см. главу 14) утверждает, что первая успешная репликация РНК без ферментов в протоклетках Шостака — это одно из самых больших достижений науки о зарождении жизни за много лет17. «Он добился потрясающего прогресса, — говорит Сазерленд. — Я считаю это настоящим прорывом» 18.
Однако не все полагают эти эксперименты убедительными. Такие критики любят вспоминать, что — несомненно впечатляющие — протоклетки все же вряд ли могут образоваться сами по себе, поскольку для их получения нужны химические реактивы в чистом виде, а на древней Земле имелись лишь сотни перемешанных между собой различных соединений. В ответ команда Шостака представила доказательства того, что смесь липидов также может образовывать протоклетки, причем делает это даже легче19.
Верно также и то, что протоклетки не имеют ничего похожего на метаболизм. Хотя они способны расти, вбирая в себя находящиеся вокруг них липиды, они не умеют перерабатывать химические вещества или создавать новые.
Последние десять лет Шостак занимается решением данной проблемы, в основном добавляя к своим протоклеткам катализаторы и простые белки20. В частности, в 2013 году он и Адамала использовали с этой целью белок из всего двух аминокислот*, 21. Этот совсем маленький пептид служил катализатором для синтеза второго пептида, который тут же присоединялся к мембране протоклетки и ускорял ее рост. Таким образом, с этими пептидами протоклетки увеличивались быстрее, чем без них, и более сложно устроенные протоклетки приобретали преимущество. Следовательно, определенные химические вещества могли стимулировать их развитие. С другой стороны, сами эти крошечные пептиды помогали РНК присоединиться к мембране, где ей проще вступать в различные химические реакции, в том числе для самокопирования22.
Однако все это — лишь первые шаги, и до настоящего метаболизма пока еще очень далеко. Даже простой метаболический путь Вуда – Льюнгдаля (самый первый в истории жизни, по мнению Билла Мартина) является куда более сложным. Сегодня еще трудно сказать, может ли в принципе подобный процесс происходить в протоклетках.
Хотя Шостаку и не удалось создать жизнь «с нуля» (как, впрочем, не удалось это и никому другому), глупо отрицать важность его работы на концептуальном уровне. Предполагая, что простые протоклетки могли иметь мембрану, нуклеиновые кислоты (хотя и не содержащие генов), а возможно, и метаболизм, Шостак стимулирует объединение трех гипотез, долгое время рассматривавшихся лишь по отдельности.
* * *
* «Белок» из двух аминокислотных остатков лучше называть «пептидом», а еще лучше — «дипептидом». — Прим. перев.
1 Luisi P. L. et al. Enzymatic RNA synthesis in self-reproducing vesicles: An approach to the construction of a minimal synthetic cell. Berichte der Bunsengesellschaft für physikalische Chemie, vol. 98, iss. 9, pp. 1160–1165. 1994. Oberholzer T. et al. Enzymatic RNA Replication in Self-Reproducing Vesicles: An Approach to a Minimal Cell. Biochemical and Biophysical Research Communications, vol. 207, iss. 1, pp. 250–257. 1995.
2 Jack W. Szostak: Biographical. Nobelprize.org. www.nobelprize.org/prizes/medicine/2009/szostak/biographical/
3 Marshall M. The secret of how life on Earth began. BBC Earth. 2016.
4 Szostak J. W. et al. Synthesizing life. Nature, vol. 409, iss. 6818, pp. 387–390. 2001.
5 Eigen M. Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften, vol. 58, iss. 10, p. 504. 1971.
6 Hanczyc M. M. et al. Experimental Models of Primitive Cellular Compartments: Encapsulation, Growth, and Division. Science, vol. 302, iss. 5645, pp. 618–622. 2003.
7 Chen I. A., Walde P. From Self-Assembled Vesicles to Protocells. Cold Spring Harbor Perspectives in Biology, vol. 2, iss. 7, a002170. 2010.
8 Chen I. A. et al. The Emergence of Competition Between Model Protocells. Science, vol. 305, iss. 5689, pp. 1474–1476. 2004.
9 Mansy S. S., Szostak J. W. Thermostability of model protocell membranes. PNAS, vol. 105, iss. 36, pp. 13351–13355. 2008.
10 Hanczyc M. M., Szostak J. W. Replicating vesicles as models of primitive cell growth and division. Current Opinion in Chemical Biology, vol. 8, iss. 6, pp. 660–664. 2004.
11 Zhu T. F., Szostak J. W. Coupled Growth and Division of Model Protocell Membranes. Journal of the American Chemical Society, vol. 131, iss. 15, pp. 5705–5713. 2009.
12 Zhu T. F. et al. Photochemically driven redox chemistry induces protocell membrane pearling and division. PNAS, vol. 109, iss. 25, pp. 9828–9832. 2012.
13 Budin I. et al. Concentration-Driven Growth of Model Protocell Membranes. Journal of the American Chemical Society, vol. 134, iss. 51, pp. 20812— 20819. 2012.
14 Szostak J. W. The eightfold path to non-enzymatic RNA replication. Journal of Systems Chemistry, vol. 3, iss. 2. 2012.
15 Adamala K., Szostak J. W. Nonenzymatic Template-Directed RNA Synthesis Inside Model Protocells. Science, vol. 342, iss. 6162, pp. 1098–1100. 2013.
16 Jin L. et al. Catalysis of Template-Directed Nonenzymatic RNA Copying by Iron (II). Journal of the American Chemical Society, vol. 140, iss. 44, pp. 15016–15021. 2018.
17 Joyce G. F., Szostak J. W. Protocells and RNA Self-Replication. Cold Spring Harbor Perspectives in Biology, vol. 10, iss. 9, a034801. 2018.
18 Interview with John Sutherland.
19 Budin I. et al. Chain-Length Heterogeneity Allows for the Assembly of Fatty Acid Vesicles in Dilute Solutions. Biophysical Journal, vol. 107, iss. 7, pp. 1582–1590. 2014. Jin L. et al. Fatty Acid/Phospholipid Blended Membranes: A Potential Intermediate State in Protocellular Evolution. Small, vol. 14, iss. 15, art. 1704077. 2018.
20 Blain J. C., Szostak J. W. Progress Toward Synthetic Cells. Annual Review of Biochemistry, vol. 83, pp. 615–640. 2014. Adamala K. P. et al. Collaboration between primitive cell membranes and soluble catalysts. Nature Communications, vol. 7, art. 11041. 2016.
21 Adamala K., Szostak J. W. Competition between model protocells driven by an encapsulated catalyst. Nature Chemistry, vol. 5, iss. 6, pp. 495–501. 2013.
22 Kamat N. P. et al. Electrostatic Localization of RNA to Protocell Membranes by Cationic Hydrophobic Peptides. Angewandte Chemie, vol. 54, iss. 40, pp. 11735–11739. 2015.