В водовороте жизни

МРТ-визуализация мозга и жидких сред организма

Андрей Тулупов, Андрей Савелов, Ольга Богомякова, Юлия Станкевич, Любовь Василькив
«Наука из первых рук» № 3(88), 2020

В водовороте жизни («Наука из первых рук» № 3(88), 2020)

В наши дни одно из первых мест среди причин смертности и наступления инвалидизации населения занимают врожденные и приобретенные патологии головного мозга: от инсультов и онкологических заболеваний до травм и нервно-психических расстройств. Неудивительно, что поддержание здоровья мозга является одной из центральных проблем современной медицины. Поэтому такое важное место отводится развитию методов прогнозирования, ранней диагностики и мониторинга эффективности лечения нейропатологий различного происхождения. Среди современных технологий прижизненного неинвазивного изучения состояния центральной нервной системы лидируют методы лучевой диагностики, при этом пальма первенства принадлежит магнитно-резонансной томографии, которая предлагает наиболее широкий спектр подходов к визуализации мозговых тканей и структур.

Об авторах

Андрей Александрович Тулупов («Наука из первых рук» № 3(88), 2020)

Андрей Александрович Тулупов — профессор РАН, доктор медицинских наук, главный научный сотрудник, заведующий лабораторией МРТ-технологий института «Международный томографический центр» Сибирского отделения РАН. Автор и соавтор 331 научной работы.

Андрей Александрович Савелов («Наука из первых рук» №4(52), 2013)

Андрей Александрович Савелов — кандидат физико-математических наук, старший научный сотрудник лаборатории МРТ-технологий института «Международный томографический центр» Сибирского отделения РАН. Автор и соавтор более 90 научных работ.

Ольга Борисовна Богомякова («Наука из первых рук» № 3(88), 2020)

Ольга Борисовна Богомякова — кандидат медицинских наук, научный сотрудник лаборатории МРТ-технологий института «Международный томографический центр» Сибирского отделения РАН.

Юлия Александровна Станкевич («Наука из первых рук» № 3(88), 2020)

Юлия Александровна Станкевич — кандидат медицинских наук, научный сотрудник лаборатории МРТ-технологий института «Международный томографический центр» Сибирского отделения РАН.

Любовь Михайловна Василькив («Наука из первых рук» № 3(88), 2020)

Любовь Михайловна Василькив — кандидат медицинских наук, научный сотрудник лаборатории МРТ-технологий института «Международный томографический центр» Сибирского отделения РАН.

Головной мозг — одна из наиболее хорошо снабжаемых кровью областей человеческого тела. Адекватное функционирование всех отделов высшей нервной системы и сопутствующих структур обеспечивает достаточный приток артериальной крови и отток венозной, а также постоянная циркуляция спинномозговой жидкости (ликвора). Нарушение скорости, давления, вязкости и других параметров этих биологических жидкостей может вызвать тяжелую патологию со смертельным исходом. При этом большинство работ в этой области посвящено изучению артериального звена мозговой гемодинамики, а исследования роли венозной и ликворной систем единичны. И хотя опыт последних лет существенно расширил наши знания о ликвородинамике, до сих пор есть много нерешенных и спорных вопросов.

На основе имеющихся на сегодня сведений мы не можем создать целостную картину, описывающую нарушение баланса между жидкими средами центральной нервной системы при различных патологиях. Одна из причин — недостатки существующих инструментальных методов визуализации, поэтому разработка новых подходов и оригинальных методик чрезвычайно перспективна.

Комплексный подход к морфологической и функциональной оценке мозговой ткани могут предложить современные методы лучевой диагностики: магнитно-резонансная томография (МРТ), мультиспиральная компьютерная томография (МСКТ) и ультразвуковое исследование (УЗИ). Однако на сегодня лишь МРТ позволяет неинвазивно и даже без использования контрастных средств визуализировать поток жидкости и оценить его количественные параметры. Модификации этого метода (МР-ангиография, МР-венография, МР-миелография) позволяют получить большой объем дополнительной информации для оценки функциональных параметров потока биологических жидкостей, что открывает возможности ранней диагностики широкого спектра заболеваний.

МРТ в лидерах

В основе патологических процессов в организме человека всегда лежат нарушения движения какой-либо биологической жидкости (крови, лимфы, мочи, желчи, внутрисуставной и др.), основным компонентом которой является вода. В разных органах человека в норме и при патологии существуют разные условия для перемещения таких жидкостей, что отражается на их линейной и объемной скоростях, характере движения, взаимодействии со стенками проводящих систем и других динамических параметрах.

Диагностическая визуализация и количественная оценка скоростных характеристик перемещения этих субстратов считаются основой клинической диагностики во многих медицинских отраслях: кардиологии, неврологии и нейрохирургии, урологии, гастроэнтерологии и др., однако технологии прижизненной визуализации движения биожидкостей в организме человека были изобретены и внедрены в клиническую практику лишь в последние 60–70 лет.

В этом отношении МРТ является уникальной, так как именно атомы водорода молекул воды и органических соединений дают «основу» МРТ-сигнала. Остальные методы позволяют оценить перемещение жидкости в организме только опосредованно, по перемещению различных меток (радиоактивных изотопов, красителей и др.), которые нельзя назвать полностью безопасными. Кроме того, введение таких инородных веществ в достаточно хрупкую систему, которой является любая биожидкость, может приводить к неконтролируемому изменению параметров ее движения.

Когда мозгу не хватает крови

Актуальный вопрос современной медицинской диагностики с учетом широкой распространенности острых и хронических нарушений мозгового кровообращения — оценка сосудов и кровотока в головном мозге. Магистральные кровеносные сосуды, снабжающие головной мозг, — внутренние сонные и позвоночные артерии. Изменения именно в их бассейнах наиболее часто приводят к сосудисто-мозговым катастрофам.

Современные методики МРТ позволяют в рамках одного обследования качественно и количественно оценить магистральный и тканевой кровоток, включая расположение и просвет магистральных артерий, параметры потока крови, характеристики соответствующего бассейна кровоснабжения, а также признаки нарушения мозгового кровообращения.

Так, для оценки выраженности гемодинамических нарушений при различных врожденных и приобретенных пороках сердца, крупных артериальных сосудов и их ветвей в мире широко используется двумерная фазово-контрастная МР-ангиография (2D PCA), которая позволяет визуализировать течение и картировать скорость движения крови в плоскости «томографического среза» (Stalder et al., 2008; Hsieh et al., 2015).

Контрастная перфузионная МРТ позволяет оценивать тканевой кровоток на капиллярном уровне. Чаще всего в клинической практике используется метод динамической восприимчивости контраста (DSC), при котором внутривенно вводится агент, содержащий редкоземельный элемент гадолиний, широко применяемый в медицине как парамагнитное контрастное вещество (Federau et al., 2012).

Оба этих метода использовали новосибирские специалисты для изучения особенностей магистрального и тканевого кровотока при различной сосудистой патологии головного мозга. В исследовании участвовали как здоровые добровольцы, так и пациенты с патологией позвоночных и внутренних сонных артерий, признаками нарушения мозгового кровообращения, а также после острого инсульта в бассейне средней мозговой артерии.

С использованием рутинного протокола обследования оценен ход магистральных артерий, наличие и выраженность патологических очагов. Дополнительно всем обследуемым проведена 2D PCА, а части из них — еще и перфузионная МРТ.

В результате с помощью 2D PCА удалось визуализировать кровоток в поперечном сечении в разных сегментах позвоночных, внутренних сонных и средних мозговых артерий. В итоге выявлена неравномерность распределения потока крови в просвете сосуда, включая боковое смещение более быстрой центральной части. Этот эффект был наиболее выражен в участках артерии, расположенных после ее изгиба, как физиологического, так и патологического.

Визуализация неравномерности распределения скоростных характеристик в просвете разных сегментов внутренних сонных артерий («Наука из первых рук» № 3(88), 2020)

С помощью двумерной фазово-контрастной МР-ангиографии (2D PCA) можно оценить количественные характеристики магистрального кровотока на нескольких уровнях в просвете мозговых артерий. Вверху — визуализация неравномерности распределения скоростных характеристик в просвете разных сегментов внутренних сонных артерий — парных крупных артерий шеи и головы, по данным 2D PCA. Срезы устанавливались перпендикулярно ходу артерий на шейном уровне, с одновременным захватом правого и левого сосуда. В специальной программе полученные томограммы обрабатывались с созданием геометрической фигуры, отграничивающей так называемую область интереса (в данном случае — просвет артерии), внутри которой определялись значения объемной, пиковой и средней скоростей кровотока, а также площадь поперечного сечения сосуда в каждую из фаз цикла сердечной деятельности. Цифрами отмечены уровни визуализации кровотока во внутренних сонных артериях, стрелками — просветы артерий на разных уровнях

Кроме того, оказалось, что снижение объемной скорости кровотока (количества крови, протекающей через поперечное сечение сосуда за 1 мин.) тесно связано со степенью выраженности патологических очагов головного мозга. Эта взаимосвязь подтверждена данными перфузионной МРТ: в случае единичных и множественных очагов сосудистых поражений головного мозга скорость магистрального кровотока довольно тесно коррелировала со скоростью кровотока в капиллярах мозговой ткани.

Эти результаты свидетельствуют, что количественная фазово-контрастная МРТ может с успехом применяться для оценки магистрального кровотока при нарушениях мозгового кровообращения, в первую очередь на стадии функциональных изменений, например при грозных предвестниках ишемического инсульта — транзиторных ишемических атаках, острых, коротких преходящих эпизодах неврологических нарушений. Однако для широкого использования подобных критериев требуются дополнительные исследования с увеличением числа наблюдений, чтобы учесть такие факторы, как пол, возраст, артериальное давление и др.

И стакан ликвора

В отличие от крови, о ликворе — спинномозговой жидкости, постоянно циркулирующей в полостях желудочков головного мозга, субарахноидальном пространстве (полости между мягкой и паутинной мозговыми оболочками) и ликворопроводящих путях головного и спинного мозга, знают далеко не все. В теле взрослого человека содержится в среднем 4–5 л крови и только около 120–150 мл ликвора, который обновляется несколько раз в сутки.

По химическому составу ликвор сходен с сывороткой крови: до 90% составляет вода, остальное — неорганические (электролиты, неорганический фосфор, микроэлементы) и органические (аминокислоты, белки, углеводы, мочевина и др.) вещества, участвующие в метаболизме мозга.

Процесс ликворообращения (по аналогии с кровообращением) включает три основных звена: продукцию (образование) спинномозговой жидкости, циркуляцию (перемещение) и отток (всасывание). Изменения в ликворной системе сопровождают многие неврологические и нейрохирургические заболевания. Такие патологии, как гидроцефалия (расширение желудочков головного мозга), опухоли головного и спинного мозга, субарахноидальные кисты, часто приводят к дисбалансу между продукцией, циркуляцией и всасыванием ликвора.

Спинномозговая жидкость (ликвор) осуществляет целый ряд функций: служит механической защитой («гидравлической подушкой») для мозга, поддерживает внутричерепное давление, участвует в регуляции кровообращения в полости черепа и выводе продуктов метаболизма клеток, а также оказывает бактерицидное действие.

В сутки сосудистые сплетения боковых желудочков мозга синтезируют около полулитра ликвора, а поскольку объем ликворных полостей намного меньше, то спинномозговая жидкость ежедневно обновляется 4–5 раз.

При этом до сих пор существуют трудности в диагностике подобных изменений, а имеющиеся методики не всегда позволяют правильно оценить морфологию ликворосодержащих структур либо обладают побочными эффектами, ограничивающими их применение. Тем не менее современные методы лучевой диагностики позволяют неивазивно, с минимальной лучевой нагрузкой или даже вообще без нее оценить ликворные пространства и полости.

Так, метод компьютерной томографии, основанный на использовании рентгеновских фотонов для получения изображения с помощью цифровой реконструкции, позволяет оценить изменения ликвородинамики, сопутствующие травматическим повреждениям. Но он обеспечивает лишь достаточно приблизительную оценку ликворосодержащих полостей и используется обычно для первичного диагностического скрининга.

На сегодняшний день наиболее информативным методом визуализации ликворных пространств является метод МРТ и его модификации. Так, по рутинным МРТ-изображениям можно оценить изменение размеров ликворных пространств и быстрый, турбулентный поток ликвора; по статическим изображениям в толстом срезе — визуализировать ликворные пространства и полости; по трехмерным тонкосрезовым снимкам — выявить наличие тонких мембран в субарахноидальных пространствах и цистернах, сужение тонких ликворных структур, наличие атипичных путей оттока ликвора. Оценить проходимость ликворных структур позволяют и динамические МРТ-методики.

Cлева — свищ, дефект твердой мозговой оболочки. Справа — выраженное воронковидное сужение дистальных отделов водопровода мозга у ребенка с вентрикуломегалией («Наука из первых рук» № 3(88), 2020)

Тонкосрезовые трехмерные МРТ-методики позволяют определить наличие стойких сужений тонких ликворных структур, патологических отверстий-фистул и нетипичных путей оттока спинномозговой жидкости: слева — свищ, дефект твердой мозговой оболочки, представляющий патологическое соединение (канал) между ликворным пространством височной области и крылонебной ямкой — щелевидным пространством черепа, в котором в норме ликвора нет. Ямка сообщается с носовой полостью, поэтому в случае свища ликвор начинает вытекать через нос; справа — выраженное воронковидное сужение дистальных отделов водопровода мозга у ребенка с вентрикуломегалией (увеличением желудочков)

В исследованиях новосибирских специалистов хорошо зарекомендовала себя методика количественной оценки потока (Quantitative Flow) на основе фазово-контрастной МРТ, с помощью которой можно оценить количественные параметры ликвородинамики на различных уровнях.

Таким образом у пациентов с гидроцефалией удалось показать увеличение средней и объемной скорости потока спиномозговой жидкости на уровне водопровода мозга — участка центрального канала, соединяющего третий и четвертый желудочек мозга, в самом четвертом желудочке и так называемом отверстии Мажанди в его нижних отделах. При этом в базальных цистернах (расширении в основании мозга) отмечалось прогрессирующее снижение средней и объемной скоростей потока ликвора, которое зависело от степени выраженности гидроцефалии.

Такие изменения динамики спинномозговой жидкости свидетельствуют о нарушении механизмов ее всасывания. А в качестве диагностических критериев стадии декомпенсации у пациентов с гидроцефалией можно использовать значения средней и объемной скоростей потока на уровне базальных цистерн (˂ 0,40 и 0,50 мл/с соответственно).

С помощью МРТ-методики количественной оценки потока (QF) можно провести многоуровневую качественную и количественную оценку параметров потока спинномозговой жидкости («Наука из первых рук» № 3(88), 2020)

С помощью МРТ-методики количественной оценки потока (QF) на основе фазово-контрастной МРТ можно провести многоуровневую качественную и количественную оценку параметров потока спинномозговой жидкости. Один из таких уровней — большое затылочное отверстие (вверху). Справа — представление этих же результатов МРТ специальной программой, с помощью которой можно отследить пульсирующий характер потока ликвора. На графике показаны изменения объемной скорости потока спинномозговой жидкости за время одного сердечного цикла в переднем и заднем отделах субарахноидального пространства на уровне большого затылочного отверстия

У пациентов с синдромом внутричерепной гипертензии об ускоренной эвакуации ликвора из полости черепа свидетельствует увеличение (примерно на треть) скоростей потока спинномозговой жидкости на уровне водопровода мозга, четвертого желудочка и большого затылочного отверстия. Так как у таких больных желудочковая система имеет нормальные размеры, то это либо повышенное образование ликвора, что встречается редко (например, при опухолевых поражениях сосудистых сплетений), либо его накопление в соединительной ткани и межклеточных пространствах мозга.

В данном случае на скорость перемещения ликвора может влиять много параметров, в том числе состояние артериального русла и скорость распространения по нему пульсовой волны повышенного давления, вызванной выбросом крови из левого желудочка сердца. У пациентов с синдромом внутричерепной гипертензии пульсовая волна распространяется быстрее, что свидетельствует о повышенной жесткости стенок мелких сосудов, которая может быть следствием накопления жидкости в межклеточных пространствах соединительной ткани.

Своевременная и точная диагностика заболеваний центральной нервной системы представляет важную медицинскую и медико-социальную проблему в связи с ростом заболеваний головного мозга. Достигнутый на сегодня прогресс в изучении причин, механизма и диагностики нейропатологий во многом обязан широкому внедрению новейших методов нейровизуализации на основе метода МРТ. С помощью различных модификаций метода МРТ удалось раскрыть механизмы динамики крови и спинномозговой жидкости в головном и спинном мозге, изучить структуру и особенности метаболизма в мозговой ткани.

В современной медицинской литературе имеется достаточно много сведений об использовании МРТ в неврологии. Однако лишь недавно были открыты новые возможности МРТ в диагностике мозговых патологий на самых ранних стадиях — на уровне микроциркуляции и первых метаболических изменений. В частности, результаты, полученные новосибирскими исследователями, подтверждают, что современные подходы в МРТ существенно расширяют наши знания о патофизиологии расстройств ликвородинамики, а методики нейровизуализации дают возможность мониторинга этой системы при терапевтическом и оперативном лечении.

К сожалению, большинство этих методов настолько сложны и трудоемки, что их могут применять лишь в специализированных центрах, что не всегда возможно с учетом состояния пациента. Именно поэтому необходимо и дальше совершенствовать лучевую диагностику на основе самых современных возможностей МРТ — это будет неоценимым вкладом в развитие не только дифференциальной диагностики патологий головного мозга, но и неврологии и нейрохирургии в целом.

Литература
1. Богомякова О. Б., Станкевич Ю. А., Колпаков К. И. и др. Расчетные параметры для оценки взаимодействия жидких сред центральной нервной системы по данным лучевой интроскопии (Часть 1) // Вест. рентгенологии и радиологии. 2020. Т. 104. № 4. С. 244–252.
2. Тулупов А. А., Летягин А. Ю., Курбатов В. П. и др. Возможности магнитно-резонансной томографии в визуализации периферического кровотока // Вест. НГУ. Серия: Биология, клиническая медицина. 2004. Т. 2. № 1. С. 57–69.
3. Bogomyakova O., Stankevich Yu., Mesropyan N. et al. Evaluation of the flow of cerebrospinal fluid as well as gender and age characteristics in patients with communicating hydrocephalus, using phase-contrast magnetic resonance imaging // Acta Neurologica Belgica. 2016. V. 116. N. 4. P. 495–501.
4. Federau C., Maeder Ph., O’Brien K. et al. Quantitative measurement of brain perfusion with intravoxel incoherent motion MR imaging // Radiology. 2012. V. 265. N. 3. P. 874–81.
5. Hsieh K., Stein K., Mono M.-L. et al. In-vivo phase contrast magnetic resonance angiography of the cerebrovascular system: a comparative study with duplex sonography // Swiss medical weekly. 2015. w14155.
6. Stalder A. F., Russe M. F., Frydrychowicz A. et al. Quantitative 2D and 3D phase contrast MRI: Optimized analysis of blood flow and vessel wall parameters // Magn Reson Med. 2008. V. 60. N. 5. P. 1218–1231.


0
Написать комментарий

    Избранное






    Элементы

    © 2005–2025 «Элементы»