Эвальд Мюллер, Вольфганг Хилльбранд, Ханс-Томас Янка
«В мире науки» №12, 2006

Об авторах

Эвальд Мюллер (Ewald Müller), Вольфганг Хилльбранд (Wolfgang Hillebrandt) и Ханс-Томас Янка (Hans-Thomas Janka) работают в Институте астрофизики Общества им. Макса Планка (Гарчинг, Германия) и преподают в Мюнхенском техническом университете. Мюллер руководит группой численной и релятивистской астрофизики. В 1993 г. вместе с Янка он получил премию Хейнца Биллинга за использование компьютеров в науке. Хиллебрант — один из директоров Института астрофизики, занимается ядерной астрофизикой, эволюцией звезд и взрывами сверхновых. В 1982 г. он получил премию Германского физического общества за работы по нуклеосинтезу путем быстрого захвата нейтронов. Янка интересуется нейтрино в астрономии, эволюцией нейтронных звезд, вспышками сверхновых и гамма-всплесками. Через месяц после того, как он начал работать над диссертацией, была открыта сверхновая 1987А, изменившая его судьбу (а также всю Вселенную).

Моделирование ситуации рождения сверхновой — нелегкое дело. По крайней мере, до недавнего времени все эксперименты терпели крах. Но астрофизикам все-таки удалось взорвать звезду.

Через десять секунд после вспышки термоядерное пламя почти полностью сжигает белый карлик в этой компьютерной модели. Стремительно распространяясь из глубины наружу, цепная ядерная реакция превращает углерод и кислород (сиреневый и красный) в кремний (оранжевый) и железо (желтый). Более ранние модели, не способные проследить турбулентные движения, не могли объяснить, почему звезды не тихо умирают, а взрываются (фото: www.sciam.ru)
Через десять секунд после вспышки термоядерное пламя почти полностью сжигает белый карлик в этой компьютерной модели. Стремительно распространяясь из глубины наружу, цепная ядерная реакция превращает углерод и кислород (сиреневый и красный) в кремний (оранжевый) и железо (желтый). Более ранние модели, не способные проследить турбулентные движения, не могли объяснить, почему звезды не тихо умирают, а взрываются (фото: www.sciam.ru)

11 ноября 1572 г. астроном Тихо Браге (Tycho Brahe) заметил в созвездии Кассиопеи новую звезду, сияющую так же ярко, как Юпитер. Пожалуй, именно тогда рухнула уверенность в том, что небеса вечны и неизменны, и родилась современная астрономия. Спустя четыре века астрономы поняли, что некоторые звезды, вдруг становясь в миллиарды раз ярче обычных, взрываются. В 1934 г. Фриц Цвикки (Fritz Zwicky) из Калифорнийского технологического института назвал их «сверхновыми». Они снабжают космическое пространство во Вселенной тяжелыми элементами, управляющими формированием и эволюцией галактик, и помогают изучать расширение пространства.

Цвикки и его коллега Вальтер Бааде (Walter Baade) предположили, что энергию для взрыва дает звезде гравитация. По их мнению, звезда сжимается, пока ее центральная часть не достигнет плотности атомного ядра. Коллапсирующее вещество может выделить гравитационную потенциальную энергию, достаточную чтобы выбросить наружу ее остатки. В 1960 г. Фред Хойл (Fred Hoyle) из Кембриджского университета и Вилли Фаулер (Willy Fowler) из Калтеха считали, что сверхновые похожи на гигантскую ядерную бомбу. Когда звезда типа Солнца сжигает свое водородное, а затем и гелиевое топливо, наступает очередь кислорода и углерода. Синтез этих элементов не только обеспечивает гигантский выброс энергии, но и производит радиоактивный никель-56, распад которого может объяснить послесвечение взрыва, длящееся несколько месяцев.

Обе идеи оказались правильными. В спектрах некоторых сверхновых нет следов водорода (обозначаются как тип I); по-видимому, у большинства из них произошел термоядерный взрыв (тип Iа), а у остальных (типы Ib и Ic) — коллапс звезды, сбросившей свой внешний водородный слой. Сверхновые, в спектрах которых обнаружен водород (тип II), также возникают в результате коллапса. Оба явления превращают звезду в разлетающееся газовое облако, а гравитационный коллапс приводит к образованию сверхплотной нейтронной звезды или даже черной дыры. Наблюдения, в особенности сверхновой 1987А (тип II), подтверждают предложенную теорию.

Однако до сих пор взрыв сверхновой остается одной из главных проблем астрофизики. Компьютерные модели воспроизводят его с трудом. Очень сложно заставить звезду взорваться (что само по себе приятно). Звезды — саморегулирующиеся объекты, которые остаются стабильными в течение миллионов и миллиардов лет. Даже умирающие светила имеют механизмы затухания, но не взрыва. Чтобы воспроизвести последний, потребовались многомерные модели, расчет которых был вне возможностей компьютеров.

Обзор: сверхновые

  • По всем правилам, звезды должны быть спокойными и умирать тихо. Но почему некоторые из них в конце жизни взрываются как сверхновые? Это одно из сложнейших явлений в астрофизике.

  • Теоретики постепенно улучшали свои модели и недавно смогли объяснить два основных типа сверхновых. Задача состояла в том, чтобы учесть все три пространственных измерения для воспроизведения динамики турбулентных потоков.

  • Оказалось, что взрыв может быть очень несимметричным, разбрасывающим в разные стороны остатки звезды (включая и вновь синтезированные химические элементы). Если в результате образуется нейтронная звезда, то она может получить ускорение и стремительно понесется по галактике.

Взрыв — дело нелегкое

Белые карлики — это неактивные остатки звезд, похожих на Солнце, которые постепенно остывают и затухают. Они могут взрываться как сверхновые типа Ia. Однако, по мнению Хойла и Фаулера, если белый карлик вращается вокруг другой звезды на близкой орбите, он может аккретировать (отсасывать) вещество со своего компаньона, увеличивая тем самым свою массу, центральную плотность и температуру до такой степени, что возможен взрывной синтез из углерода и кислорода.

Сверхновая Тихо: термоядерный взрыв, наблюдавшийся знаменитым датским астрономом Тихо Браге в 1572 г., оставил после себя облака кремния, железа и других тяжелых элементов, светящихся в рентгеновском диапазоне (зеленый, красный). Ударная волна (тонкая голубая оболочка) расширяется со скоростью 7500 км/с (фото: www.sciam.ru)
Сверхновая Тихо: термоядерный взрыв, наблюдавшийся знаменитым датским астрономом Тихо Браге в 1572 г., оставил после себя облака кремния, железа и других тяжелых элементов, светящихся в рентгеновском диапазоне (зеленый, красный). Ударная волна (тонкая голубая оболочка) расширяется со скоростью 7500 км/с (фото: www.sciam.ru)

Термоядерные реакции должны вести себя как обычный огонь. Фронт горения может распространяться через звезду, оставляя за собой «ядерный пепел» (в основном — никель). В каждый момент времени реакции синтеза должны идти в небольшом объеме, в основном — в тонком слое на поверхности пузырей, заполненных «пеплом» и плавающих в глубине белого карлика. Из-за своей низкой плотности пузыри могут всплывать к поверхности звезды.

Но термоядерное пламя будет гаснуть, поскольку выделение энергии приводит к расширению и охлаждению звезды, гася ее горение. В отличие от обычной бомбы, у звезды нет оболочки, ограничивающей ее объем.

Кроме того, в лаборатории невозможно воссоздать взрыв сверхновой, его можно только наблюдать в космосе. Наша группа провела тщательное моделирование, используя суперкомпьютер IBM p690. Численная модель звезды была представлена расчетной сеткой, имевшей 1024 элемента по каждой из сторон, что позволило разрешить детали размером в несколько километров. Каждый вычислительный сет потребовал более чем 1020 арифметических операций; с такой задачей мог справиться лишь суперкомпьютер, проделывающий более 1011 операций в секунду. В итоге все это заняло почти 60 процессоро-лет. Различные вычислительные ухищрения, упрощающие модель и используемые в других областях науки, неприменимы к сверхновым с их асимметричными течениями, экстремальными условиями и гигантским пространственным и температурным диапазоном. Физика частиц, ядерная физика, гидродинамика и теория относительности очень сложны, а модели сверхновых должны оперировать ими одновременно.

Термоядерная сверхновая

  1. Один из видов сверхновых типа Ia — результат внезапной ядерной детонации звезды
  2. Более массивная из двух звезд солнечного типа, исчерпав свое топливо, превращается в белый карлик
  3. Белый карлик захватывает газ, теряемый соседкой, и приближается к критической массе
  4. «Пламя» неуправляемых ядерных реакций возгорается в турбулентном ядре карлика
  5. Пламя устремляется наружу, превращая углерод и кислород в никель
  6. За несколько секунд карлик полностью разрушается. Затем еще несколько недель радиоактивный никель распадается, вызывая свечение остатков звезды

    Прорыв в моделировании сверхновых позволил исследовать турбулентность. Здесь показано, что произойдет через 0,6 с после воспламенения. Фронт ядерного горения имеет турбулентную, пузырчатую структуру (голубой). Турбулентность служит причиной быстрого продвижения фронта и подавления стабилизирующих механизмов звезды  (изображение: www.sciam.ru)
    Прорыв в моделировании сверхновых позволил исследовать турбулентность. Здесь показано, что произойдет через 0,6 с после воспламенения. Фронт ядерного горения имеет турбулентную, пузырчатую структуру (голубой). Турбулентность служит причиной быстрого продвижения фронта и подавления стабилизирующих механизмов звезды (изображение: www.sciam.ru)

Под капотом

Решение пришло с неожиданной стороны — при изучении работы автомобильного двигателя. Перемешивание бензина и кислорода и их воспламенение создают турбулентность, которая, в свою очередь, увеличивает поверхность горения, интенсивно деформируя ее. При этом скорость сжигания топлива, пропорциональная площади горения, возрастает. Но и звезда тоже турбулентна. Потоки газа проходят в ней огромные расстояния с большой скоростью, поэтому малейшие возмущения быстро превращают спокойное течение в турбулентный поток. В сверхновой всплывающие горячие пузыри должны перемешивать вещество, заставляя ядерное горение распространяться так быстро, что звезда не успеет перестроиться и «затушить» пламя.

Крабовидная туманность — газовый остаток сверхновой с коллапсом ядра, взрыв которой наблюдался в 1054 г. В центре — нейтронная звезда (указана стрелкой), выбрасывающая частицы, заставляющие газ светиться (голубой). Внешние волокна в основном состоят из водорода и гелия разрушенной массивной звезды (фото: www.sciam.ru)
Крабовидная туманность — газовый остаток сверхновой с коллапсом ядра, взрыв которой наблюдался в 1054 г. В центре — нейтронная звезда (указана стрелкой), выбрасывающая частицы, заставляющие газ светиться (голубой). Внешние волокна в основном состоят из водорода и гелия разрушенной массивной звезды (фото: www.sciam.ru)

В исправно работающем двигателе внутреннего сгорания пламя распространяется с дозвуковой скоростью, ограниченной скоростью диффузии тепла сквозь вещество — такой процесс называют дефлаграцией, или быстрым горением. В «стреляющем» двигателе пламя распространяется со сверхзвуковой скоростью в виде ударной волны, проносящейся по кислородно-топливной смеси и сжимающей ее (детонация). Термоядерное пламя может распространяться тоже двумя путями. Детонация способна полностью сжечь звезду, оставив только самые «негорючие» элементы, такие как никель и железо. Однако в продуктах этих взрывов астрономы обнаруживают большое разнообразие элементов, включая кремний, серу и кальций. Следовательно, ядерное горение распространяется, по крайней мере, в начале, как дефлаграция.

В последние годы были созданы надежные модели термоядерной дефлаграции. Исследователи из Калифорнийского (г. Санта-Круз), Чикагского университетов и наша группа опирались при этом на программы, созданные для исследования химического горения и даже для прогноза погоды. Турбулентность — принципиально трехмерный процесс. В турбулентном каскаде кинетическая энергия перераспределяется от больших масштабов к малым и, в конце концов, рассеивается в виде тепла. Исходный поток дробится на все более и более мелкие части. Поэтому моделирование непременно должно быть трехмерным.

Модель сверхновой имеет грибообразный вид: горячие пузыри поднимаются в слоеной среде, сморщиваясь и растягиваясь турбулентностью. Усиленный ею рост скорости ядерных реакций за несколько секунд приводит к разрушению белого карлика, остатки которого разлетаются со скоростью около 10 тыс. км/с, что соответствует наблюдаемой картине.

Но до сих пор не ясно, отчего воспламеняется белый карлик. Кроме того, дефлаграция должна выбрасывать большую часть вещества карлика неизмененной, а наблюдения показывают, что лишь малая часть звезды не изменяется. Вероятно, взрыв обусловлен не только быстрым горением, но и детонацией, а причина сверхновых типа Ia — не только аккреция вещества на белый карлик, но и слияние двух белых карликов.

Гравитационная могила

Другой тип сверхновых, вызванный коллапсом звездного ядра, объяснить труднее. С наблюдательной точки зрения эти сверхновые более разнообразны, чем термоядерные: одни из них имеют водород, другие нет; одни взрываются в плотной межзвездной среде, другие — в почти пустом пространстве; одни выбрасывают огромное количество радиоактивного никеля, другие нет. Энергия выброса и скорость расширения также различаются. Самые мощные из них производят не только классический взрыв сверхновой, но и продолжительный гамма-всплеск (см.: Герелс Н., Леонард П. и Пиро Л. Ярчайшие взрывы во Вселенной // ВМН, № 4, 2003). Эта неоднородность свойств — одна из многих загадок. Сверхновые с коллапсом ядра — основные кандидаты для формирования самых тяжелых элементов, таких как золото, свинец, торий и уран, которые могут образоваться только в особых условиях. Но никто не знает, действительно ли такие предпосылки возникают в звезде, когда ее ядро взрывается.

Несмотря на то, что идея коллапса кажется простой (при сжатии ядра выделяется энергия гравитационной связи, за счет которой выбрасываются внешние слои вещества), трудно понять процесс в деталях. В конце жизни у звезды с массой более 10 масс Солнца образуется слоеная структура, с глубиной появляются слои все более тяжелых элементов. Ядро состоит в основном из железа, а равновесие звезды поддерживается квантовым отталкиванием электронов. Но в конце концов масса звезды подавляет электроны, которые вжимаются в атомные ядра, где начинают реагировать с протонами и образовывать нейтроны и электронные нейтрино. В свою очередь, нейтроны и оставшиеся протоны прижимаются друг к другу все сильнее, пока их собственная сила отталкивания не начнет действовать и не остановит коллапс.

В этот момент сжатие останавливается и сменяется расширением. Вещество, втянутое вглубь гравитацией, начинает частично вытекать наружу. В классической теории данная задача решается с помощью ударной волны, которая возникает, когда внешние слои звезды со сверхзвуковой скоростью налетают на ядро, внезапно замедлившее свое сжатие. Ударная волна движется наружу, сжимая и нагревая вещество, с которым она сталкивается, и в то же время теряет свою энергию, в конце концов затухая. Моделирование показывает, что энергия сжатия быстро рассеивается. Как же в таком случае звезда взрывает себя?

Первой попыткой разрешить задачу стала работа Стирлинга Колгейта (Stirling Colgate) и Ричарда Уайта (Richard White) 1966 г., а позже — компьютерные модели Джима Вильсона (Jim Wilson), созданные им в начале 1980-х гг., когда все трое работали в Ливерморской национальной лаборатории им. Лоуренса. Они предположили, что ударная волна — не единственный переносчик энергии от ядра к внешним слоям звезды. Возможно, вспомогательную роль играют нейтрино, рожденные во время коллапса. На первый взгляд, идея выглядит странной: как известно, нейтрино чрезвычайно неактивны, они так слабо взаимодействуют с другими частицами, что их даже трудно зарегистрировать. Но в сжимающейся звезде они обладают более чем достаточной энергией, чтобы вызвать взрыв, а в условиях предельно высокой плотности неплохо взаимодействуют с веществом. Нейтрино нагревают слой вокруг коллапсирующего ядра сверхновой, поддерживая давление в тормозящейся ударной волне.

Сверхновая с коллапсом ядра

  1. Сверхновые другого рода образуются при сжатии звезд с массами более 8 масс Солнца. Они относятся к типам Ib, Ic или II, в зависимости от наблюдаемых особенностей
  2. Массивная звезда в конце жизни имеет слоистую структуру из разных химических элементов
  3. Железо не участвует в ядерном синтезе, поэтому в ядре не выделяется тепло. Газовое давление падает, и лежащее выше вещество устремляется вниз
  4. За секунду ядро сжимается и превращается в нейтронную звезду. Падающее вещество отскакивает от нейтронной звезды и создает ударную волну
  5. Нейтрино вырывается из новорожденной нейтронной звезды, неравномерно подталкивая наружу ударную волну
  6. Ударная волна проносится по звезде, разрывая ее на части
Современные модели способны детально проследить хаотические движения в процессе взрыва. Здесь показана внутренность звезды через 5,5 ч после начала взрыва (изображение: www.sciam.ru)
Современные модели способны детально проследить хаотические движения в процессе взрыва. Здесь показана внутренность звезды через 5,5 ч после начала взрыва. Движущиеся вверх крупные пузыри поддерживают ударную волну до расстояния 300 млн км. Нейтрино, вообще-то очень слабо взаимодействующие частицы, устремляются наружу в таком количестве и с такой энергией, что начинают играть главную роль. Турбулентность перемешивает углерод, кислород, кремний и железо из глубоких слоев (голубой, бирюзовый) с лежащими выше гелием (зеленый) и водородом (красный) (изображение: www.sciam.ru)

Как ракета

Но достаточно ли такого дополнительного толчка для поддержания волны и завершения взрыва? Компьютерное моделирование показывало, что недостаточно. Несмотря на то, что газ и поглощает нейтрино, и излучает их; модели показывали, что потери доминируют, и поэтому взрыв не получается. Но в этих моделях было одно упрощение: звезда в них считалась сферически симметричной. Поэтому игнорировались многомерные явления, такие как конвекция и вращение, которые очень важны, поскольку наблюдаемые сверхновые порождают весьма несферичный, «лохматый» остаток.

Туманность Гитара — это ударная волна, расходящаяся за нейтронной звездой (у стрелки), которая несется сквозь газ со скоростью 1600 км/с. Чтобы сообщить звезде такую скорость, взрыв должен быть весьма несимметричным (фото: www.sciam.ru)
Туманность Гитара — это ударная волна, расходящаяся за нейтронной звездой (у стрелки), которая несется сквозь газ со скоростью 1600 км/с. Чтобы сообщить звезде такую скорость, взрыв должен быть весьма несимметричным (фото: www.sciam.ru)

Многомерное моделирование показывает, что вокруг ядра сверхновой нейтрино нагревают плазму и создают в ней всплывающие пузыри и грибообразные потоки. Конвекция переносит энергию к ударным волнам, толкая их вверх и вызывая взрыв.

Когда взрывная волна немного замедляется, пузыри горячей расширяющейся плазмы, разделенные текущим вниз холодным веществом, сливаются. Постепенно образуются один или несколько пузырей в окружении нисходящих потоков. В результате взрыв становится асимметричным. Кроме того, заторможенная ударная волна может деформироваться, и тогда коллапс принимает форму песочных часов. Дополнительная неустойчивость возникает, когда ударная волна вырывается наружу и проходит через неоднородные слои предка сверхновой. При этом химические элементы, синтезированные на протяжении жизни звезды и во время взрыва, перемешиваются.

Поскольку остатки звезды в основном вылетают в одну сторону, находящаяся в центре нейтронная звезда отскакивает в другую, как скейтборд, откатывающийся назад, когда вы спрыгиваете с него. Наша компьютерная модель показывает скорость отскока более 1000 км/с, что соответствует наблюдаемому движению многих нейтронных звезд. Но некоторые из них движутся медленнее, вероятно, потому, что пузыри во время образовавшего их взрыва не успели слиться. Возникает единая картина, в которой различные варианты становятся результатом одного основного эффекта.

Несмотря на значительные достижения последних лет, ни одна из существующих моделей не воспроизводит весь комплекс явлений, связанных со взрывом сверхновой, и содержит упрощения. Полная версия должна использовать семь измерений: пространство (три координаты), время, энергия нейтрино и скорость нейтрино (описанную двумя угловыми координатами). Более того, это нужно сделать для всех трех типов, или ароматов нейтрино.

Но может ли взрыв быть спровоцирован различными механизмами? Ведь магнитное поле может перехватить вращательную энергию только что сформировавшейся нейтронной звезды и дать новый толчок ударной волне. Кроме того, оно будет выдавливать вещество наружу вдоль оси вращения в виде двух полярных джетов. Эти эффекты позволят объяснить наиболее мощные взрывы. В частности, гамма-всплески могут быть связаны с джетами, движущимися с околосветовой скоростью. Возможно, ядра таких сверхновых коллапсируют не в нейтронную звезду, а в черную дыру.

Пока теоретики улучшают свои модели, наблюдатели пытаются использовать не только электромагнитное излучение, но также нейтрино и гравитационные волны. Коллапс ядра звезды, его бурление в начале взрыва и его возможное превращение в черную дыру приводят не только к интенсивному выбросу нейтрино, но и сотрясают структуру пространства-времени. В отличие от света, который не может пробиться сквозь вышележащие слои, эти сигналы исходят прямо из бурлящего ада в центре взрыва. Созданные недавно детекторы нейтрино и гравитационных волн могут приоткрыть завесу над тайной смерти звезд.

Реактивный эффект сверхновой

Наблюдатели гадали, почему нейтронные звезды несутся по Галактике с огромной скоростью. Новые модели сверхновой с коллапсом ядра предлагают объяснение, основанное на внутренней асимметрии этих взрывов

Реактивный эффект сверхновой (фото www.sciam.ru)

Новорожденная нейтронная звезда в центре зарождающегося взрыва почти спокойна

Гравитация несимметричного выброса тянет нейтронную звезду в определенном направлении, а падающее на звезду вещество дает ей дополнительный толчок

Эти силы выбрасывают нейтронную звезду. (По закону сохранения импульса нейтронная звезда улетает в ту сторону, откуда на нее падает вещество.)


Моделирование показывает, что асимметрия развивается уже в начале взрыва. Малые различия в начале коллапса звезды приводят к большим различиям в степени асимметрии

Моделирование показывает, что асимметрия развивается уже в начале взрыва. Малые различия в начале коллапса звезды приводят к большим различиям в степени асимметрии (изображение www.sciam.ru)

Эти различия, в свою очередь, проявляются в разных скоростях нейтронных звезд. Сравнивая предсказанные скорости с наблюдаемыми, можно тестировать модели

Эти различия, в свою очередь, проявляются в разных скоростях нейтронных звезд. Сравнивая предсказанные скорости с наблюдаемыми, можно тестировать модели (изображение www.sciam.ru)

Дополнительная литература

  1. Бисноватый-Коган Г.С. Физические вопросы теории звездной эволюции. М.: Наука, 1989.
  2. Гоффмейстер К., Рихтер Г., Венцель В. Переменные звезды. М.: Наука, 1990.
  3. Де Ягер К. Звезды наибольшей светимости. М.: Мир, 1984.
  4. Каплан С.А. Физика звезд. М.: Наука, 1977.
  5. Псковский Ю.П. Новые и сверхновые звезды. М.: Наука, 1985.
  6. Шкловский И.С. Сверхновые звезды и связанные с ними проблемы. М.: Наука, 1976.
  7. Supernova Explosions in the Universe. A. Burrows in Nature, Vol. 403, pages 727–733; February 17, 2000.
  8. Full-Star Type Ia Supernova Explosion Models. F.K. Röpke and W. Hillebrandt in Astronomy and Astrophysics, Vol. 431, No. 2, pages 635–645; February 2005. Preprint available at arxiv.org/abs/astro-ph/0409286
  9. The Physics of Core-Collapse Supernovae. S. Woosley and H.-Th. Janka in Nature Physics, Vol. 1, No. 3, pages 147–154; December 2005. Preprint available at arxiv.org/abs/astro-ph/0601261
  10. Multidimensional Supernova Simulations with Approximative Neutrino Transport. L. Scheck, K. Kifonidis, H.-Th. Janka and E. Müller in Astronomy and Astrophysics (in press). Preprint available at arxiv.org/abs/astro-ph/0601302

1
Показать комментарии (1)
Свернуть комментарии (1)

  • taras  | 28.10.2017 | 14:39 Ответить
    Энто что ж за звезда диаметром всего несколько тысяч км? Ничего, что даже Земля больше? И если один шаг занимает 10^20, то при 10^11 операций в секунду вам на него нужен миллиард секунд. Это уже больше 31-го года. Весь расчёт в 60 лет ну ни как не уложится. Дальше. 10^20-й операций при более, чем миллиарде ячеек? В то, что это вообще возможно, поверить не сложно. Но интересно было бы узнать, как. Если "в лоб" решать систему в миллиард уравнений и в миллиард неизвестных, то потребуется более 5*10^26 операций. У вас матрица разрежена? Кстати, а где вы в 1957-м взяли такой мощный комп? В девяностых был новостью суперкомп с быстродействием 3*10^10 операций в секунду, а в первом поколении нормой было 3*10^3 операций в секунду. Сто миллионов машин вы в кластер соединить в 1957-м не могли. Да, гибибайта памяти не было даже в 1967-м, так что даже если на ячейку отвести всего один байт и не оставить ни одного байта ни на приложение, ни на систему, то и тогда такой массив просто негде было хранить. Если же исходить из того, что имеются ввиду именно годы работы процессора, то есть, например, при шести процессорах вся машина работала 10 лет, а при трёх - 20, то вообще не сходится. Пусть машина двухпроцессорная. Быстродействие указывается только для всей машины. Значит вся машина тратит 31 год на один шаг главного цикла. Это уже 62 процессорогода. В 60 тупо не укладываемся. При трёх процессорах за 31 год пройдут 93 процессорогода. И так далее. Чем больше процессоров, тем больше процессоролет за заданное время, а время одного шага известно по быстродействию всей машины. Если не все процессоры работают всё время, то часть времени ниже быстродействие. И 31-го года уже не хватит на один шаг главного цикла. А ведь там и так даже не ровно 31 год. Так что 60 лет процессорного времени не получаются в любом случае. Остаётся 60 лет машинного времени, то есть 60 лет работы всего компьютера. Но таких компьютеров не было даже 20 лет назад. А 50 лет назад не было компьютеров, способных даже загрузить ответ этой задачи. И токуете о неприменимости способов упрощения, а при этом сами же приводите "ворота", в которые полная матрица даже для задачи с одни неизвестным на элемент Вашего дикого массива не лезет. Уложить миллиард неизвестных в жалкие 10^20 операций можно только используя разреженность матрицы, будь она хоть неявной. И проблема не в неоптимальности метода Гаусса, а в связях каждого неизвестного с каждым и необходимости их все учесть. Из-за них получается уже 618 970 019 642 690 137 449 562 112 одних вычитаний и 618 970 020 219 150 890 826 727 424 делений/умножений. Не считая операций для организации циклов и без учёта обратного хода. В 10^20 не лезет, хоть тресни. И это если влияние каждого элемента на каждый линейно и коэффициенты загружены в готовом виде. А ведь на самом деле ещё и их придётся вычислять.
    Ответить
Написать комментарий
Элементы

© 2005–2025 «Элементы»