Татьяна Потапова
«В мире науки» №3, 2006

Преобразование энергии в животной клетке

Перенос электронов в цепях митохондрий. Большинство ē, отнятых от субстратов дыхания, переносится через никотинамиддинуклеотид (NAD), коэнзим Q (КоQ) и цитохром c на кислород с образованием воды. Образование протонного потенциала в митохондрияx животных: а) AH2 – субстрат дыхания; б) A – продукт (изображение: www.sciam.ru)
Перенос электронов в цепях митохондрий
Большинство ē, отнятых от субстратов дыхания, переносится через никотинамиддинуклеотид (NAD), коэнзим Q (КоQ) и цитохром c на кислород с образованием воды.
Образование протонного потенциала в митохондрияx животных:
а) AH2 – субстрат дыхания; б) A – продукт (изображение: www.sciam.ru)

Неспособные к фотосинтезу клетки (например, человека) получают энергию из пищи, которой служит или биомасса растений, созданная в результате фотосинтеза, или биомасса других живых существ, питающихся растениями, или останки любых живых организмов.

Питательные вещества (белки, жиры и углеводы) преобразуются животной клеткой в ограниченный набор низкомолекулярных соединений – органических кислот, построенных из атомов углерода, которые с помощью специальных молекулярных механизмов окисляются до углекислоты и воды. При этом освобождается энергия, она аккумулируется в форме электрохимической разности потенциалов на мембранах и используется для синтеза АТФ или напрямую для совершения определенных видов работы.

История изучения проблем преобразования энергии в животной клетке, как и история фотосинтеза, насчитывает более двух веков.

У аэробных организмов окисление углеродных атомов органических кислот до углекислого газа и воды протекает с помощью кислорода и называется внутриклеточным дыханием, которое происходит в специализированных частицах – митохондриях. Трансформация энергии окисления осуществляется ферментами, расположенными в строгом порядке во внутренних мембранах митохондрий. Эти ферменты составляют так называемую дыхательную цепь и работают как генераторы, создавая разность электрохимических потенциалов на мембране, за счет которой синтезируется АТФ, подобно тому, как это происходит при фотосинтезе.

Основная задача и дыхания и фотосинтеза — поддерживать соотношение АТФ/АДФ на определенном уровне, далеком от термодинамического равновесия, что и позволяет АТФ служить донором энергии, смещая равновесие тех реакций, в которых он участвует.

Основными энергетическими станциями живых клеток служат митохондрии — внутриклеточные частицы размером 0,1–10μ, покрытые двумя мембранами. В митохондриях свободная энергия окисления продуктов питания превращается в свободную энергию АТФ. Когда АТФ соединяется с водой, при нормальных концентрациях реагирующих веществ, выделяется свободная энергия порядка 10 ккал/моль.

Организация дыхательной цепи. I – NADH-дегидрогеназа (убихинон); II – сукцинатдегидрогеназа; III – убихинол-цитохром c-редуктаза; IV — цитохром c-оксидаза; V – H -транспортирующая АТФ-синтаза (изображение: www.sciam.ru)
Организация дыхательной цепи
I – NADH-дегидрогеназа (убихинон); II – сукцинатдегидрогеназа; III – убихинол-цитохром c-редуктаза; IV — цитохром c-оксидаза; V – H -транспортирующая АТФ-синтаза (изображение: www.sciam.ru)

В неорганической природе смесь водорода и кислорода носит название «гремучей»: достаточно небольшой искры, чтобы произошел взрыв – мгновенное образование воды с огромным выделением энергии в виде тепла. Задача, которую выполняют ферменты дыхательной цепи: произвести «взрыв» так, чтобы освобождающаяся энергия была запасена в форме, пригодной для синтеза АТФ. Что они и делают: упорядоченно переносят электроны от одного компонента к другому (в конечном счете, на кислород), постепенно понижая потенциал водорода и запасая энергию.

О масштабах этой работы говорят следующие цифры. Митохондрии взрослого человека среднего роста и веса перекачивают через свои мембраны около 500 г ионов водорода в день, образуя мембранный потенциал. За это же время Н+-АТФ-синтаза производит около 40 кг АТФ из АДФ и фосфата, а использующие АТФ процессы гидролизуют всю массу АТФ назад в АДФ и фосфат.

Исследования показали, что митохондриальная мембрана действует как трансформатор напряжения. Если передавать электроны субстрата от НАДН прямо к кислороду сквозь мембрану, возникнет разность потенциалов около 1 В. Но биологические мембраны – двухслойные фосфолипидные пленки не выдерживают такую разность – возникает пробой. Кроме того, для производства АТФ из АДФ, фосфата и воды требуется всего 0,25 В, значит, нужен трансформатор напряжения. И задолго до появления человека клетки «изобрели» такой молекулярный прибор. Он позволяет в четыре раза увеличить ток и за счет энергии каждого передаваемого от субстрата к кислороду электрона перенести через мембрану четыре протона благодаря строго согласованной последовательности химических реакций между молекулярными компонентами дыхательной цепи.

Итак, два главных пути генерации и регенерации АТФ в живых клетках: окислительное фосфорилирование (дыхание) и фотофосфорилирование (поглощение света), — хотя и поддерживаются разными внешними источниками энергии, но оба зависят от работы цепочек каталитических ферментов, погруженных в мембраны: внутренние мембраны митохондрий, тилакоидные мембраны хлоропластов или плазматические мембраны некоторых бактерий.


1
Показать комментарии (1)
Свернуть комментарии (1)

  • vlkhait  | 27.06.2009 | 17:38 Ответить
    Статья касается отличия живой и неживой природы. Эту разницу автор усматривает в процессах переноса энергии внутри живой клетки. Я не подвергаю сомнению содержание высказанных автором идей с точки зрения ее стремления к истине. Я внимательно изучаю представленный автором материал, чтобы самому добраться до понимания энергетических преобразований в живом организме, несмотря на то, что у меня инженерное образование и я не имею глубоких знаний в биологии. Тем не менее, тема меня очень интересует, в следствие интереса к созданию искусственного интеллекта и искусственной жизни.
    Если говорить о разнице между живой и неживой природой, то мне кажется, рассматривать в качестве ключевого момента перенос энергии в живой клетке излишне, поскольку достаточно того, что живые организмы имеют клеточное строение а неживые нет. С другой стороны подход к пониманию отличия живой и неживой природы с точки зрения внутреннего строения, мне кажется, не плодотворным и является трудным для понимания большинства людей, в том числе, и профессионалов в других областях знания. Более плодотворный подход это инженерный подход т.е. с позиции черного ящика и зависит от внешнего проявления живых и неживых объектов. Их может наблюдать любой человек и отличать между собой живые и неживые объекты. Мыслящий человек непременно обнаружит разницу, найдет и объяснит эту разницу.
    Ответить
Написать комментарий
Элементы

© 2005–2025 «Элементы»