Предсказано, что черные дыры могут испускать излучение определенной температуры, названное излучением Хокинга в честь открывшего его Стивена Хокинга (Stephen W. Hawking) из Кембриджского университета. Температура обычных физических систем, например, Солнца или воды в стакане, объясняется статистической механикой в терминах движения микроскопических элементов. Чтобы сказать что-то о температуре черной дыры, необходимо знать, что представляют собой ее микроскопические элементы и как они ведут себя. Рассказать об этом может только теория квантовой гравитации.
Некоторые аспекты термодинамики черных дыр заставили ученых всерьез задуматься о том, можно ли вообще разработать квантовомеханическую теорию гравитации. Казалось, что сама квантовая механика вот-вот рухнет перед лицом эффектов, порождаемых черными дырами. Теперь мы знаем, что черной дыре в АДС-пространстве-времени соответствует определенная конфигурация частиц на его границе. Поскольку число частиц очень велико, и все они пребывают в постоянном движении, теоретики смогли воспользоваться обычными правилами статистической механики для определения температуры. Вычисленное значение в точности совпало с результатом, который Хокинг получил совершенно другим путем! При этом граничная теория подчиняется обычным правилам квантовой механики и никакой несогласованности не возникает.
Физики могут использовать голографическое соответствие в противоположном направлении и, используя известные свойства черных дыр во внутреннем пространстве-времени, вывести поведение кварков и глюонов при очень высоких температурах на границе. Дэм Сон (Dam Son) из Вашингтонского университета изучал сдвиговую вязкость черных дыр и пришел к выводу, что она чрезвычайно мала — меньше чем у любой известной жидкости. Из-за голографической эквивалентности вязкость сильно взаимодействующих кварков и глюонов при высоких температурах тоже должна быть очень низка.
Проверку этого предсказания проведут на Релятивистском коллайдере тяжелых ионов (RHIC) в Брукхейвенской национальной лаборатории, где изучаются столкновения ядер золота при очень высоких энергиях. Предварительный анализ экспериментальных данных показывает, что при столкновениях возникает жидкость с очень низкой вязкостью. Даже изучая упрощенную версию хромодинамики, Сон, похоже, обнаружил свойство, которое существует и в реальном мире. Неужели в RHIC были получены маленькие пятимерные черные дыры?! Пока об этом рано говорить. (В любом случае крошечных черных дыр нечего бояться: они испаряются почти с такой же скоростью, с какой образуются, и «живут» в пяти измерениях, а не в нашем четырехмерном мире.)
Предстоит ответить еще на множество вопросов о голографических теориях. В частности, есть ли что-нибудь похожее для нашей вселенной, а не для АДС-пространства? Существенной особенностью АДС-пространства является то, что оно имеет границу, где время хорошо определено. Граница существовала и будет существовать вечно. У расширяющейся вселенной, возникшей при Большом взрыве, нет такой границы. Поэтому неясно, как определить голографическую теорию для нашей вселенной, ведь в ней нет подходящего места для голограммы.
Важный урок состоит в том, что квантовая гравитация, на многие десятилетия озадачившая лучшие умы планеты, может оказаться очень простой, если ее рассматривать в терминах правильных переменных. Будем надеяться, что вскоре у нас появится простое описание Большого Взрыва.
ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА: