Мартин Рис

«Всего шесть чисел». Главы из книги

Глава 1. Космос и микромир

Человек... нераздельно связан со всем сущим, с известным и неизвестным... с планктоном, с фосфоресцирующей гладью моря, с кружащимися планетами и расширяющейся Вселенной — все это пронизано эластичной струной времени. Хорошо оторвать взгляд от приливной заводи и посмотреть на звезды, а потом — снова взглянуть на их отражения в приливной заводи.

Джон Стейнбек, «Море Кортеса»

Шесть чисел

Ткань нашей Вселенной поддерживают математические законы — им подвластны не только атомы, но и галактики, звезды, люди. Свойства атомов — размеры, массы, силы, связывающие их вместе, — определяют устройство нашего повседневного мира. Само существование атомов зависит от сил и частиц в их глубинах. Объекты, которые изучают астрономы — планеты, звезды, галактики, — подвластны силе притяжения. И происходит все это в расширяющейся Вселенной, основные свойства которой были предопределены в момент Большого взрыва.

Наука движется вперед, выявляя структуры и закономерности нашего мира так, чтобы возможно большее количество явлений можно было описать в рамках общих категорий и законов. Физики-теоретики ставят себе целью предельно лаконично выразить сущность физических законов в единой системе уравнений и в нескольких числах. В этой области удалось достигнуть значительного прогресса, хотя по-прежнему есть над чем работать.

В этой книге описываются шесть чисел, которые считаются наиболее важными. Два из них связаны с основными силами; другие два определяют размер и общую структуру Вселенной и показывают, будет ли она существовать вечно; еще два говорят о свойствах самой Вселенной:

  • Вселенная простирается так далеко из-за того, что в природе существует чрезвычайно важное огромное число N, равное 1 000 000 000 000 000 000 000 000 000 000 000 000. Это число является отношением силы электрического притяжения, удерживающей атомы вместе, к силе гравитационного притяжения между ними. Если бы в числе N было хоть немного меньше нулей, могла бы существовать только короткоживущая миниатюрная вселенная: ни одно существо не могло бы стать больше насекомого, и времени на биологическую эволюцию не хватило.
  • Другое число, ε (эпсилон), значение которого составляет 0,007, определяет, насколько прочно связаны ядра атомов и как атомы формируются. От его значения зависит светимость Солнца и, более опосредованно, то, как внутри звезд водород преобразуется во все элементы периодической таблицы. Углерод и кислород распространены повсеместно, а золото и уран встречаются редко — и все это из-за процессов, которые происходят внутри звезд. Если бы ε равнялось 0,006 или 0,008, мы вообще бы не существовали.
  • Космическое число Ω (омега) измеряет количество вещества во Вселенной — галактик, рассеянного между ними газа и темной материи. Ω указывает нам на важность отношения между силами притяжения и расширением Вселенной. Если бы это отношение было слишком высоким по отношению к определенному критическому значению, Вселенная давно бы схлопнулась. Если бы оно было слишком низким, не сформировались бы галактики и звезды. Кажется, первоначальная скорость расширения Вселенной была идеально рассчитана.
  • Измерение четвертого числа λ (лямбда) было самой крупной научной новостью 1998 г. Сила, о которой совершенно не подозревали — космическая «антигравитация», — контролирует расширение Вселенной, хотя и не оказывает какого-либо заметного эффекта на расстояниях меньше миллиарда световых лет (далее — св. лет). Со временем ей предначертано стать доминирующей над силой притяжения и другими силами, по мере того как наша Вселенная будет становиться все более пустой и темной. К счастью для нас (и к удивлению физиков-теоретиков), λ очень мала. Иначе бы ее воздействие не позволило сформироваться галактикам и звездам и космическая эволюция закончилась бы, даже не начавшись.
  • Элементы всех космических структур — звезд, галактик и скоплений галактик — несут на себе отпечаток Большого взрыва. Сущность нашей Вселенной зависит от одного числа, Q, которое представляет собой соотношение двух фундаментальных энергий и составляет примерно 1/100 000. Если бы Q было еще меньше, Вселенная была бы инертной и не имела сложной структуры. Если бы Q было значительно больше, на месте Вселенной возникло бы очень мрачное место, где звезды и планетные системы были бы поглощены огромными черными дырами.
  • Шестое жизненно важное число известно уже много столетий, но теперь его рассматривают с новой точки зрения. Это количество пространственных измерений нашего мира, D, и равно оно трем. Жизнь не смогла бы существовать, если бы D равнялось двум или четырем. Время — это четвертое измерение, но оно отличается от остальных тем, что имеет направленность: мы можем двигаться только в направлении будущего. Около черных дыр пространство так искривлено, что свет движется по кругу, а время может стоять на месте. Более того, сразу после Большого взрыва в микромасштабах пространство уже могло обнаружить свою глубинную структуру, лежащую в основе всего, — вибрацию и гармонию объектов, называемых «суперструнами», в десяти измерениях.

Возможно, между этими числами существуют какие-то связи. Тем не менее на данный момент мы не можем вычислить какое-либо из них, отталкиваясь от значений других. Не знаем мы и того, сможет ли какая-нибудь «теория всего» в конце концов создать формулу, которая установит взаимосвязь между ними или определит их однозначно. Я выделяю именно эти шесть чисел, потому что каждое из них играет решающую и особую роль в нашей Вселенной, а вместе они определяют, как она развивается и какие имеет внутренние потенциальные возможности. Более того, три из этих чисел (те, которые относятся к крупномасштабной вселенной) только недавно были измерены с достаточной точностью.

Эти шесть чисел составляют «рецепт» эволюции Вселенной. Более того, результат очень чувствителен к их значениям: если бы любое из них было чуть-чуть другим, не было бы звезд и не могла бы существовать жизнь. Является ли такая точная «настройка» всего лишь случайностью, совпадением? Или в этом проявляется воля милосердного Творца? Я придерживаюсь третьего мнения. Бесконечное количество вселенных прекрасно может существовать там, где эти числа другие, только большинство из этих вселенных были бы мертворожденными или стерильными. Мы могли появиться (и поэтому сейчас существуем) только во вселенной с «правильной» комбинацией. Осознание этого дает совершенно новую точку зрения на Вселенную, наше место в ней и на саму природу физических законов.

Поразительно, что расширяющаяся вселенная, отправная точка которой так «проста», что может быть определена всего несколькими числами, может развиться (если эти числа «настроены» подходящим образом) в столь затейливо структурированную упорядоченную систему. Итак, для начала нам придется обставить нашу «сцену», рассмотрев эту структуру во всех масштабах, от атомов до галактик.

<...>

Глава 3. Огромное число N: сила тяготения в космосе

Кто же поверит в муравья в теории?
Или в жирафа схему?
Десять тысяч докторов любой категории
Пол-леса сведут в теорему.

Джон Чиарди

«Часовой механизм» Ньютона

Если бы мы решили организовать лекции для разумных существ с других планет, было бы естественно начать с гравитации или силы тяготения. Эта сила удерживает планеты на их орбитах и связывает звезды. В более крупном масштабе целые галактики — скопления миллиардов звезд — управляются силой тяготения. Ни одно вещество, ни один вид частиц, ни даже сам свет не избегают ее влияния. Гравитация управляет расширением всей Вселенной и, возможно, предопределит ее окончательную судьбу.

Сила тяготения по-прежнему остается таинственной. Она озадачивает больше, чем любая другая сила природы. Но это была первая сила, описанная математическим путем. В XVII в. сэр Исаак Ньютон рассказал нам, что притяжение между двумя любыми объектами подчиняется «закону обратных квадратов». Сила ослабевает пропорционально квадрату расстояния между двумя телами: разместите их в два раза дальше друг от друга, и притяжение между ними станет в четыре раза слабее. Ньютон понял, что сила, которая заставляет яблоки падать на землю и управляет траекторией выпущенного из пушки ядра, — это та же самая сила, которая удерживает Луну на ее орбите вокруг Земли. Он доказал, что его закон объясняет эллиптическую форму планетарных орбит — убедительная демонстрация способности математики предсказывать, как работает «часовой механизм» мира природы.

Великий труд Ньютона «Математические начала натуральной философии» (Philosophiæ Naturalis Principia Mathematica), опубликованный в 1687 г., — это трехтомник, содержащий тексты на латинском языке, обрамленные детально разработанными теоремами, в основном геометрического характера. Это памятник выдающегося научного интеллекта тысячелетия. Несмотря на непривлекательный образ жизни, влияние Ньютона было огромным и коснулось даже поэтов и философов. Оно распространилось и на более широкую аудиторию: например, в 1737 г. появилась книга, озаглавленная «Ньютонианство для леди» (Newtonianism for Ladies). Сущность его теории тяготения была изложена и в более доступной книге «Система мира» (The System of the World).

В этой более поздней работе основная мысль подробно проиллюстрирована картинкой, где из пушки, стоящей на вершине горы, стреляют ядрами параллельно поверхности Земли. Чем быстрее они летят, тем дальше могут улететь до того, как упадут на землю. Если скорость будет очень высока, Земля уйдет из траектории ядра и оно выйдет на орбиту. Требуемая скорость (около 8 км/с), разумеется, была недостижима для пушек времен Ньютона, но сегодня у нас есть искусственные спутники, которые остаются на своих орбитах именно благодаря этой скорости. Сам Ньютон показал, что та же самая сила удерживает планеты на их эллиптических орбитах вокруг Солнца. В более крупном масштабе тяготение действует на скопления звезд и на галактики, где миллиарды звезд обращаются вокруг общего центра.

В недрах Солнца и других звезд поддерживается равновесие между силой тяготения, удерживающей раскаленное звездное вещество, и давлением этого вещества, которое, если бы не действовало притяжение, заставило бы звезды разлететься на части. В атмосфере нашей собственной Земли давление на уровне поверхности точно так же уравновешивает вес всего того воздуха, который находится над нашими головами.

Тяготение в большом и малом масштабах

Притяжение нашей Земли оказывает более сильный эффект на крупные объекты. Когда продюсеры фильмов-катастроф используют модель, чтобы изобразить, например, рушащийся мост или плотину, эти объекты должны быть сделаны не из настоящих стали и бетона, но из очень хрупких материалов, которые погнутся или разобьются от падения с высоты стола. И чтобы выглядеть реалистичными, эти кадры должны быть сняты в ускоренном режиме, а потом прокручены с замедлением. Даже когда все сделано очень тщательно, можно найти подсказки, которые указывают нам на то, что перед нами — миниатюрная модель, а не реальный объект. Например, маленькие волны в резервуаре с водой сглаживаются из-за поверхностного натяжения (той силы, которая удерживает форму дождевых капель), но этот эффект ничтожно мал, если смотреть на настоящую бурную реку или океанские волны. Поверхностное натяжение позволяет водомеркам бегать по воде, но мы из-за своего веса этого делать не можем.

Размер критически важен для биологического мира. Крупные животные — это не просто раздутые варианты маленьких, у них другие пропорции, к примеру более толстые ноги относительно роста. Представьте себе, что вы в два раза увеличили животное, но оставили его форму той же самой. Его объем и вес стали бы в 8 (23) раз больше, а не увеличились бы всего вдвое, в то время как поперечное сечение ног возросло бы только в 4 (22) раза и конечности были бы слишком слабыми, чтобы удержать такое тело. Ему бы потребовалась иная конструкция. Чем больше существо, тем тяжелее оно падает: «годзиллам» потребовались бы ноги толще, чем их тело, и они не пережили бы падения. С другой стороны, мыши могут забраться по вертикальной стене и безо всякого вреда пережить падение с высоты, намного превышающей их рост.

Галилей (который умер в тот год, когда родился Ньютон) был первым, кто четко понял эту зависимость от размера. Он писал:

С другой стороны, и природа не может произвести деревьев несоразмерной величины, так как ветви их, отягощенные собственным чрезвычайным весом, в конце концов сломились бы... уменьшая размеры тел, мы не уменьшаем в такой же пропорции их прочности; в телах меньших замечается даже относительное увеличение ее, так, я думаю, что небольшая собака может нести на себе двух или даже трех таких же собак, в то время как лошадь едва ли может нести на спине одну только другую лошадь, равную ей по величине1.

Таким же образом ограничивается и размер птиц (ограничения являются более строгими для птиц типа колибри, которые могут зависать на месте, трепеща крыльями, а не для альбатросов, которые планируют), но для плавающих существ ограничения не являются такими строгими, поэтому-то в океанах и возможно существование левиафанов. Напротив, слишком маленький размер ведет к проблемам другого рода — большая площадь кожи относительно массы. В результате тепло быстро теряется и маленькие млекопитающие и птицы должны много есть и иметь быстрый метаболизм, чтобы сохранить тепло.

Подобные закономерности должны быть справедливы и для других миров. Например, физик Эдвин Солпитер вместе с Карлом Саганом размышляли о сложной экологии гипотетических шарообразных существ, которые могли бы выжить в плотной атмосфере Юпитера. У каждого нового поколения возникала бы одна и та же проблема гонки со временем: они должны вырасти достаточно большими, чтобы достичь нулевой плавучести, до того как притяжение расплющит их в темных глубинных слоях с высоким давлением.

Значение числа N и почему оно так велико

Несмотря на всю свою важность для нас, нашей биосферы и космоса, тяготение на самом деле является удивительно слабым по сравнению с другими силами, которые действуют на атомы. Электрические заряды с противоположными знаками притягиваются друг к другу: атом водорода состоит из положительно заряженного протона с единственным (отрицательно заряженным) электроном, пойманным на орбите вокруг протона. Согласно законам Ньютона, два протона будут притягивать друг друга под действием силы притяжения (гравитации), а также подвергаться воздействию электрической силы отталкивания. Обе эти силы одинаково зависят от расстояния (обе подчиняются закону «обратных квадратов»), и поэтому их относительная сила зависит от очень важного числа N, на которое не влияет, насколько далеко находятся протоны друг от друга. Когда два атома водорода соединяются вместе в молекулу, электрическая сила отталкивания между двумя протонами нейтрализуется двумя электронами. Гравитационное притяжение между протонами в 1036 раз слабее электрических сил и практически неизмеримо. Химики спокойно могут не обращать на него никакого внимания, когда изучают, как группы атомов соединяются для формирования молекул.

Тогда почему гравитация является доминирующей силой, прижимающей нас к земле и удерживающей Луну и планеты на их орбитах? Это происходит потому, что сила притяжения — это всегда притяжение: если вы удвоите массу, вы удвоите силу притяжения, которая при этом возникает, в то время как электрические заряды могут как отталкивать друг друга, так и притягивать, они могут быть и положительными, и отрицательными. Два заряда удваивают силу одного из них, только если у них одинаковый знак. Но любой предмет в нашей повседневной жизни состоит из огромного количества атомов, у каждого из которых имеется положительно заряженное ядро, окруженное отрицательно заряженными электронами, — положительные и отрицательные заряды практически полностью нейтрализуются. Даже когда мы «заряжаемся» так, что у нас приподнимаются кончики волос, из равновесия выходит меньше чем один заряд из миллиарда миллиардов. Но по отношению к «гравитационному заряду» все на свете имеет один и тот же знак, поэтому сравнительно с электрическими силами притяжение выигрывает по отношению к более крупным, чем атомы, объектам. Равновесие электрических сил только слегка нарушается, когда твердое тело сжимают или растягивают. Яблоко падает, только когда совместное притяжение всех атомов Земли может одержать победу над электрическим притяжением в черенке, которым оно крепится к ветке дерева. Гравитация играет для нас важную роль, потому что мы живем на тяжелой Земле.

Мы можем дать этому количественную оценку. В главе 1 мы вообразили ряд фотографий, каждая из которых делалась с расстояния, увеличенного в 10 раз по сравнению с предыдущим. Теперь представьте себе ряд сфер различного размера, содержащих соответственно 10, 100, 1000... атомов; другими словами, каждая последующая сфера в 10 раз тяжелее, чем каждая предыдущая. 18-я будет размером с песчинку, 29-я — с человека, а 40-я — с крупный астероид. При каждом увеличении массы в тысячу раз объем также увеличивается в тысячу раз (при условии, что сферы имеют одинаковую плотность), но радиус возрастает только в 10 раз. Значимость собственной силы притяжения сферы, измеряемой количеством энергии, которая потребуется на то, чтобы атом мог преодолеть действие этой силы, зависит от массы сферы, деленной на радиус2, и возрастает в сотню раз. В масштабе атомов сила притяжения начинается с 10−36, но она усиливается в 102 (иначе говоря, 100) раз при увеличении массы на каждые три степени 10 (т. е. в 1000 раз). Таким образом, притяжение наверстает упущенное на 54-м объекте (54 = 36 × 3/2), когда масса станет примерно равной массе Юпитера. В любом твердом образовании, которое по массе больше Юпитера, притяжение так сильно, что преодолевает силы, удерживающие твердые тела вместе.

Песчинки и крупинки сахара, как и мы, испытывают на себе притяжение массивной Земли. Но их собственная гравитация — то притяжение, которое дают составляющие их атомы, в отличие от земного тяготения, пренебрежимо мало. Собственная сила тяжести не важна и для астероидов, и для двух спутников Марса, напоминающих по форме картофелины, — Фобоса и Деймоса. Но такие большие тела, как планеты (и даже наша собственная крупная Луна), недостаточно жестки, чтобы сохранять неправильную форму: сила тяжести сделала их практически шарообразными. А массы, превышающие массу Юпитера, будут сдавлены собственной силой тяжести до огромной плотности, если только их центр не будет оставаться достаточно горячим, чтобы поддерживать равновесие за счет давления, как это происходит с Солнцем и другими звездами. Именно из-за того, что притяжение является таким слабым, среднестатистическая звезда, такая как Солнце, может быть такой тяжелой. При меньших объемах притяжение не может конкурировать с давлением, как не может и сжать вещество, чтобы нагреть его до той степени, когда оно начинает светиться.

Масса Солнца примерно в тысячу раз больше массы Юпитера. Если бы оно было холодным, притяжение сжало бы его в миллионы раз плотнее, чем обычное твердое тело. Оно превратилось бы в белого карлика размером примерно с Землю, но в 330 000 раз тяжелее. Но на самом деле солнечное ядро имеет температуру 15 млн градусов — оно в тысячи раз горячее его светящейся поверхности, и давление этого чрезвычайно горячего газа «раздувает» Солнце и позволяет ему оставаться в устойчивом равновесии.

Английский астрофизик Артур Эддингтон одним из первых понял физическую природу звезд. Он размышлял о том, как много мы могли бы узнать о них, если бы представляли их чисто теоретически, обитая на постоянно покрытой облаками планете. Разумеется, мы не могли бы предполагать, сколько звезд существует, но простое рассуждение о тех границах, о которых я только что говорил, могло бы сказать нам, насколько звезды велики. Не слишком трудно продолжить это рассуждение и подсчитать, насколько ярко должны сиять такие объекты. В заключение Эддингтон говорит: «Отстраним теперь завесу из облаков, которая окутывала нашего физика, и позволим ему взглянуть на небо. Он найдет на нем тысячи миллионов газовых шаров, и масса каждого из них лежит между [вычисленными им] массами»3.

Сила тяготения слабее сил, управляющих микромиром, в 1036 раз — это и есть число N. А если бы тяготение не было таким относительно слабым? Представьте себе, например, вселенную, где гравитация слабее электрических сил «всего» в 1030 раз, а не в 1036. Атомы и молекулы в ней будут вести себя точно так же, как и в нашей реальной Вселенной, но предметам вовсе не будет необходимости быть такими большими, чтобы тяготение могло конкурировать с другими силами. В этой воображаемой вселенной количество атомов, нужное, чтобы создать звезду (связанный гравитацией термоядерный реактор), будет в миллиард раз меньше. Масса планет тоже уменьшится в миллиард раз. Независимо от того, смогут ли эти планеты оставаться на устойчивых орбитах, сила тяготения будет препятствовать развитию жизни на них. В этом воображаемом мире с сильной гравитацией даже насекомым потребуются толстые ноги, и никакое животное не сможет намного обогнать их в размерах. Притяжение разрушит любое существо ростом с человека.

В подобной вселенной галактики будут формироваться гораздо быстрее и получаться более миниатюрными. Звезды, вместо привычного нам расположения, будут так плотно набиты, что близкие соприкосновения станут достаточно частыми. Это само по себе исключает существование стабильных планетных систем, потому что орбиты будут изменяться из-за проходящих мимо звезд, что (к счастью для нашей Земли) едва ли может случиться в нашей Солнечной системе.

Но еще сильнее развитию сложных экосистем будет препятствовать ограниченное время развития. Из мини-звезд такой вселенной будет быстро уходить тепло: в таком воображаемом мире с сильным притяжением время жизни звезд будет в миллион раз короче. Вместо того чтобы существовать миллиарды лет, обычная звезда проживет всего около 10 000 лет. Мини-солнца сгорят быстрее и истощат всю энергию еще до того, как органическая эволюция успеет сделать первые шаги. Условия для сложной эволюции будут, несомненно, куда менее благоприятными, если тяготение будет сильнее, даже если больше ничего не изменится. Не будет такого громадного запаса времени, необходимого для физических и химических реакций, как в нашей Вселенной. Однако, если построить наши рассуждения по-другому, то даже немного более слабое притяжение могло бы обеспечить куда более сложные и долгоживущие структуры.

Тяготение — организующая сила космоса. В главе 7 мы увидим, насколько оно было важно для того, чтобы позволить различным структурам, среди которых первоначально не было резко выраженных неоднородностей, развернуться после Большого взрыва. Но это произошло только потому, что тяготение является слабым по сравнению с другими силами, что позволяет существовать большим и долгоживущим структурам. Парадоксально, но чем слабее притяжение (при условии, что оно не равно нулю), тем значительнее и сложнее может быть его влияние. У нас нет никакой теории, которая бы давала нам значение числа N. Все, что мы знаем, — это то, что такое сложное образование, как человечество, не могло развиться, если бы N было куда меньше 1 000 000 000 000 000 000 000 000 000 000 000 000.

От Ньютона к Эйнштейну

Спустя более двух столетий после Ньютона Эйнштейн предложил свою теорию тяготения, получившую название «общая теория относительности» (ОТО). Согласно этой теории, планеты на самом деле следуют прямым путем в «пространстве-времени», но этот путь искривляется из-за присутствия Солнца. Иногда говорят, что Эйнштейн «сверг с пьедестала» ньютоновскую физику, но это заблуждение. Законы Ньютона по-прежнему с высокой точностью описывают движение объектов в Солнечной системе (самым известным противоречием теории Ньютона является небольшая аномалия орбиты Меркурия, объяснимая с помощью теории Эйнштейна). Этот закон вполне отвечает требованиям, необходимым для программирования траекторий автоматических аппаратов, отправляющихся на Луну и другие планеты. Тем не менее теория Эйнштейна, в отличие от теории Ньютона, объясняет явления, происходящие с объектами, движущимися со скоростью, близкой к скорости света, в условиях огромной силы тяготения, которая может быть причиной таких громадных скоростей, и с эффектом гравитационного отклонения самого света. Куда важнее то, что Эйнштейн углубил понимание самого явления гравитации. Для Ньютона оставалось тайной, почему все предметы падают одинаково и следуют по схожим орбитам — почему сила тяготения и инерция для любых веществ имеют одно и то же соотношение (в отличие от электрических сил, где «заряд» и «масса» непропорциональны), но Эйнштейн доказал, что это естественное следствие того, что все тела следуют прямым путем в пространстве-времени, но этот путь искривляется из-за массы и энергии. ОТО, таким образом, стала понятийным прорывом — особенно значительным, поскольку этот прорыв стал следствием озарения Эйнштейна, а не появился в результате какого-либо отдельного эксперимента или наблюдения.

Эйнштейн не доказывал, что Ньютон ошибался, он вышел за рамки теории Ньютона, включив ее в нечто более глубокое и более широко применимое. На самом деле было бы куда лучше (и помогло бы избежать неправильного понимания ее культурного значения), если бы теория Эйнштейна получила другое название. Ее бы стоило назвать не «теорией относительности», а «теорией инвариантности». Достижение Эйнштейна состояло в том, что он разработал систему уравнений, которые можно применить для любого наблюдателя, и выявил феноменальное обстоятельство: скорость света, измеренная в любом месте, является одной и той же, несмотря на то что наблюдатель движется.

Вехами в развитии любой науки является создание все более обобщенных теорий, которые сосредотачивают в себе прежде не связанные факты и расширяют широту охвата тех теорий, которые существовали до них. Физик и историк Джулиан Барбур использует метафору о восхождении в горы4, которая, как мне кажется, выглядит очень правдоподобно:

Чем выше мы поднимаемся, тем более всеохватывающий перед нами открывается вид. Каждая новая точка обзора дает лучшее понимание взаимосвязи вещей. Более того, постепенное накопление понимания перемежается неожиданным и ошеломляющим расширением горизонта, когда мы добираемся до перевала и видим нечто, что и вообразить себе не могли во время подъема. Стоит лишь найти направление в открывшемся пейзаже, наш путь к недавно покоренной вершине становится очевидным и занимает почетное место в новом мире.

Опыт формирует наше восприятие и здравый смысл: мы усваиваем те физические законы, которые напрямую влияют на нас. Законы Ньютона в какой-то мере были усвоены обезьянами, перепрыгивающими с дерева на дерево. Но на далеких просторах космического пространства среда очень отличается от нашей. Мы не должны удивляться тому, что знания, основанные на здравом смысле, не приложимы к огромным космическим расстояниям, высоким скоростям или к очень большой силе тяготения.

Разумное существо, способное быстро перемещаться по Вселенной, но ограниченное основными физическими законами (а не уровнем развития техники), развило бы свое интуитивное восприятие пространства и времени, соединив характерные и кажущиеся невероятными следствия из ОТО. Особое значение, как оказалось, имеет скорость света: к ней можно приблизиться, но ее невозможно превысить. Но это «космическое ограничение скорости» не ограничивает вас в том, куда вы можете добраться за время вашей жизни, потому что, когда космический корабль разгоняется почти до скорости света, часы идут медленнее и время на его борту «растягивается». Тем не менее если вы совершите путешествие до звезды, находящейся в 200 св. годах, а потом вернетесь на Землю, здесь пройдет больше 200 лет, каким бы молодым вы ни оставались. Ваш космический корабль не может лететь со скоростью большей, чем свет (с точки зрения оставшегося дома наблюдателя), но чем ближе ваша скорость приближается к световой, тем меньше вы состаритесь.

Эти явления находятся за пределами интуитивного восприятия только потому, что наш опыт ограничен низкими скоростями. Авиалайнер развивает всего миллионные доли скорости света и недостаточно быстр, чтобы заметить замедление времени: даже для самых активных воздушных путешественников эта задержка составит меньше миллисекунды за всю жизнь. В наше время это крошечное воздействие, тем не менее измерено с помощью экспериментов, где использовались атомные часы, отмеряющие миллиардные доли секунды, и оказалось, что полученные результаты согласуются со значением, предсказанным Эйнштейном.

Относительное замедление времени вызывает сила тяготения: около больших масс часы идут медленнее. Это также практически невозможно ощутить на Земле, поскольку точно так же, как мы привыкли только к «маленьким» скоростям, мы испытываем только «слабое» притяжение. Тем не менее это замедление необходимо учитывать, наряду с явлениями орбитального движения, в программировании потрясающе точной системы глобального позиционирования (GPS).

Мера измерения силы, с которой тяготение действует на тело, — это скорость, с которой должно лететь метаемое тело, чтобы вырваться за пределы притяжения. Для Земли эта скорость составляет 11,2 км/с. По сравнению со скоростью света — 300 000 км/с — это ничтожная скорость, но и ее достижение — задача большой сложности для инженеров-ракетчиков, вынужденных использовать химическое топливо, лишь миллиардная доля так называемой энергии массы покоя (mc2 Эйнштейна — см. главу 4) которого трансформируется в эффективную мощность. Скорость убегания с поверхности Солнца составляет 600 км/с — и это всего лишь пятая часть 1% скорости света.

«Сильное тяготение» и черные дыры

Теория Ньютона с очень небольшими поправками работает во всей Солнечной системе. Но когда тяготение становится намного сильнее, мы должны приготовиться к сюрпризам. Астрономы нашли такие места — это, к примеру, нейтронные звезды. Такие сверхплотные объекты получаются после взрыва сверхновых (что мы обсудим в следующей главе). Нейтронные звезды обычно в 1,4 раза тяжелее Солнца, но имеют диаметр всего около 20 км. На их поверхности сила тяготения в миллион миллионов раз выше, чем на Земле. Чтобы приподняться на миллиметр над поверхностью нейтронной звезды, нужно больше энергии, чем на то, чтобы вырваться из земного тяготения. Ручка, брошенная с высоты 1 м при таком притяжении, оказала бы воздействие, сравнимое с взрывом тонны тринитротолуола (хотя на самом деле огромная сила тяготения на поверхности нейтронной звезды, разумеется, мгновенно расплющила бы подобные объекты). Брошенному телу понадобилось бы набрать половину скорости света, чтобы покинуть гравитационное поле такой звезды. И наоборот, любой предмет, свободно падающий на нейтронную звезду с большой высоты, столкнулся бы с ее поверхностью на скорости, превышающей половину скорости света.

Теория Ньютона не работает с такой мощной гравитацией, какая возникает вокруг нейтронных звезд, здесь нужна ОТО Эйнштейна. Часы около поверхности такой звезды будут идти на 10–20% медленнее. Свет, идущий с ее поверхности, будет сильно искривляться, поэтому, глядя издалека, вы увидите не просто полусферу, но и часть задней поверхности нейтронной звезды.

Тело в несколько раз меньше или в несколько раз тяжелее нейтронной звезды поглотит весь свет поблизости и станет черной дырой. Пространство вокруг нее будет «сворачиваться». Если Солнце сжать так, чтобы его радиус был равен 3 км, оно станет черной дырой. К счастью, Вселенная уже «провела» такие эксперименты за нас: известно, что в космосе имеются объекты, которые схлопнулись и отрезали себя от окружающего мира.

В нашей Галактике есть много миллионов черных дыр, масса которых примерно в десять раз больше солнечной. Эти черные дыры являются окончательным состоянием массивных звезд или результатом их столкновений. Когда такие объекты «изолированы» в пространстве, их очень трудно обнаружить. Это можно сделать, только наблюдая за гравитационным воздействием, которое они оказывают на другие тела или лучи света, проходящие близко от них. Легче найти те черные дыры, которые вместе с вращающейся вокруг них обычной звездой образуют двойные системы. Метод обнаружения здесь похож на тот, который используется, чтобы высчитать наличие планет по их влиянию на движение звезды, вокруг которой они вращаются. В случае с черными дырами задача упрощается, поскольку видимая звезда имеет массу меньше, чем у темного объекта (вместо того чтобы быть в тысячу или более раз тяжелее, как звезда по сравнению с планетой), и поэтому обращается по более широкой и быстрой орбите.

Астрономы всегда особенно интересуются самыми «предельными» явлениями в космосе, потому что, изучая их, мы с большей степенью вероятности узнаем что-нибудь качественно новое. Возможно, самым значительным из всех является удивительно мощное излучение, которое называется «гамма-всплеском». Эти явления, такие мощные, что на несколько секунд затмевают миллион галактик с их звездами, возможно, указывают на черные дыры в момент их образования.

Самые большие черные дыры находятся в центрах галактик. Мы обнаруживаем их присутствие, наблюдая интенсивное свечение окружающего их газа или обнаруживая очень быстрое движение звезд, проходящих неподалеку от них. Звезды, находящиеся очень близко от центра нашей собственной Галактики, обращаются вокруг него очень быстро, как будто испытывают воздействие силы тяготения от темной массы — черной дыры, которая эквивалентна по массе 2,5 млн Солнц5. Размер черной дыры пропорционален ее массе, соответственно, черная дыра в центре нашей Галактики имеет радиус 6 млн км. Некоторые из самых чудовищных черных дыр, находящихся в центрах других галактик, весят как несколько миллиардов Солнц, а по размеру огромны, как целая Солнечная система. Тем не менее по сравнению с галактиками, в центре которых они находятся, черные дыры очень невелики.

Какими бы необычными и непознаваемыми визуально ни были черные дыры, их на самом деле проще описать, чем любые другие небесные объекты. Структура Земли зависит от ее эволюции и состава; планеты такого же размера, обращающиеся вокруг других звезд, разумеется, будут во многом отличны от Земли. А Солнце, по существу являющееся огромным шаром постоянно испытывающего вихревое движение раскаленного газа, выглядело бы по-другому, если бы состояло из других атомов. Но черная дыра «теряет всю память» о том, как она сформировалась, и быстро приходит к «штатному» гладкому состоянию, которое описывается всего двумя величинами: сколько массы она смогла поглотить и как быстро вращается. В 1963 г., задолго до того, как появились доказательства существования черных дыр, — даже до того, как американский физик Джон Арчибальд Уилер предложил само название «черная дыра»6, — теоретик из Новой Зеландии Рой Керр получил решение уравнений Эйнштейна для вращающегося объекта. Позже работы других ученых привели к потрясающему результату — все, что схлопывается (коллапсирует), превращается в черную дыру, которую точно описывает формула Керра. Черные дыры стандартизированы так же хорошо, как элементарные частицы. Теория Эйнштейна точно говорит нам, как они искажают пространство и время и какую форму имеет их «поверхность».

Относительно черных дыр наши представления о пространстве и времени терпят крах. Свет движется по прямому пути, но в сильно искривленном пространстве он может оказаться сложным завитком. Также около черных дыр время идет очень медленно (даже медленнее, чем около нейтронных звезд). Напротив, если вы сможете зависнуть около черной дыры или выйти на ее орбиту, вы увидите, как вся внешняя вселенная ускорится. Вокруг черной дыры существует четкая граница, где для находящегося на безопасном расстоянии наблюдателя стрелки часов (или падающий экспериментатор внутри границы) будут казаться застывшими, поскольку временное растяжение станет почти бесконечным.

Даже свет не может вырваться с этой поверхности. Искажение пространства и времени проявляется настолько сильно, как будто само пространство всасывают внутрь так быстро, что даже направленный наружу луч света втягивается вовнутрь. В черной дыре вы можете двигаться во внешнее пространство не дальше, чем перемещаться во времени вспять.

Вращающаяся черная дыра искажает пространство и время более сложным образом. Чтобы представить себе это, вообразите водоворот. Если вы находитесь далеко от центра водоворота, вы можете плыть в любом направлении, куда только пожелаете, по течению или против него. Ближе к центру вода закручивается быстрее, чем может плыть ваша лодка: вам приходится двигаться по кругу вместе с ее потоком, хотя вы все еще можете плыть наружу или вовнутрь. Но ближе к центру составляющая скорости течения вовнутрь становится много быстрее вашей лодки. Если вы пересечете некий «критический радиус», у вас не будет больше никакого выбора относительно дальнейшей судьбы, и вас втянет внутрь.

Черная дыра заключена в поверхность, которая работает как односторонняя мембрана. Изнутри нельзя передать никакие сигналы коллегам, которые наблюдают с безопасного расстояния. Любой, кто проходит через эту поверхность, попадает в ловушку и обречен на то, чтобы быть втянутым в область, где, согласно уравнениям Эйнштейна, тяготение «становится бесконечным» при конечном времени, измеренном его собственными часами. Эта сингулярность фактически указывает на то, что условия выходят за пределы известной нам физики, как это было, по нашему мнению, в начале существования Вселенной. Таким образом, любой, кто упал в черную дыру, встретится «с концом времени». Не есть ли это предчувствие «Большого схлопывания», которое может стать окончательной судьбой нашей Вселенной? Или у Вселенной бесконечное будущее? Или, возможно, какие-то пока неведомые законы физики смогут защитить нас от такой судьбы?

Как известно, теория Эйнштейна была порождена его удачной мыслью о том, что тяготение неотличимо от движения с ускорением и его невозможно определить в свободно падающем лифте. Тем не менее неравномерность тяготения нельзя игнорировать. Если отряд астронавтов-камикадзе будет свободно падать на Землю, как строй геометрически правильной формы, горизонтальные расстояния между ними будут сокращаться, тогда как вертикальные будут расти. Это происходит потому, что их траектории сходятся в одну точку в центре Земли, и сила тяготения сильнее действует на тех, кто в строю окажется ниже и, следовательно, ближе к Земле. Подобный же эффект будет действовать и на разные части тела каждого астронавта: падая ногами вперед, астронавт будет чувствовать вертикальное растяжение и сжатие с боков. Эта приливная сила, неощутимая для астронавтов при земном тяготении, становится катастрофически большой в черной дыре, что приводит к тому, что объект разрывается на части, превращается в «спагетти» еще до того, как достигнет сингулярности в центре. Астронавт, падающий в черную дыру, имеющую массу звезды, испытает чудовищное воздействие приливной силы до того, как достигнет поверхности дыры; после этого останется всего несколько секунд (по часам астронавта) до встречи с сингулярностью. Но у сверхмассивных черных дыр, находящихся в центрах галактик, приливные эффекты проявляются более мягко: даже после прохождения внутрь через ее поверхность останется несколько часов на исследование, прежде чем слишком большое приближение к центральной сингулярности станет чрезвычайно неприятным7.

Черные дыры в масштабе атомов

Черные дыры представляют собой замечательную теоретическую концепцию, однако они нечто большее, чем просто теория. Доказательств того, что они действительно существуют, сейчас нельзя не признать. Они связаны с некоторыми из самых зрелищных явлений, которые мы наблюдаем в космосе, — квазарами и взрывными выделениями энергии8. Все еще продолжаются споры, как именно появляются черные дыры, но нет никаких загадок в том, как тяготение может подавить все остальные силы в мертвой звезде или в облаке газа в центре галактики. Эти процессы образования требуют, чтобы тело было по крайней мере таким же тяжелым, как звезда, потому что, как мы уже видели, на астероидах и планетах притяжение не может соперничать с другими силами. На самом деле даже физик с постоянно покрытой облаками планеты мог предсказать, что если звезды существуют, то могут существовать и черные дыры, равные по массе звездам.

Размер звезд, определяющий массу черных дыр, которые могут сформироваться сегодня, проистекает, как мы видели, из равновесия между силой тяготения и силами внутри атома. Но в теории Эйнштейна масса никак особо не выделяется. Черные дыры созданы из самой ткани пространства. Поскольку пространство является однородным и непрерывным континуумом, ничего, кроме масштаба, не отличает сформировавшуюся дыру размером с атом, размером с звезду или размером со всю наблюдаемую Вселенную.

Даже дыра размером с атом могла бы иметь массу горы. Черные дыры по определению являются объектами, в которых тяготение подавляет все остальные силы. Для того чтобы сформировалась черная дыра размером в атом, 1036 атомов должны сжаться до одного. Это невыполнимое требование является еще одним следствием огромности числа N, которое измеряет слабость притяжения в масштабе атомов. Что же насчет черных дыр меньших, чем атом? Здесь существует конечный предел (который всплывет в главе 10), связанный с зернистостью пространства в самом мельчайшем масштабе.

Черные дыры в масштабе атомов могли бы сформироваться — если это вообще возможно — только под колоссальным давлением, которое имело место в первые мгновения существования Вселенной. Если такие мини-дыры действительно существуют, то они будут необычайными «отсутствующими звеньями в цепи» между космосом и микромиром.


1 Галилео Г. Избранные произведения в двух томах. Т. 2. Составитель У. И. Франкфурт. — М.: Наука, 1964. С. 216–217.

2 Для того чтобы атом вышел из сферы действия тяготения, должна быть проделана работа. Ее можно считать силой «обратного квадрата» и вычисляется она как соотношение (масса)/(радиус)2, умноженное на расстояние, через которое действует сила и которое пропорционально (радиусу). Также известна и энергия связи. Она пропорциональна соотношению (масса)/(радиус). Следовательно, эту формулу можно представить как (масса)2/3, потому что при постоянной плотности радиус вычисляется как (масса)1/3.

3 Эддингтон А. Внутреннее строение звезд. Лекция, прочитанная в Английском Королевском институте 23 февраля 1923 г. Приложение к Nature от 12 мая 1923 г., с. 15 (PDF, 1 Мб).

4 Имеется в виду книга Джулиана Барбура «Конец времени» (The End of Time, Weidenfeld & Nicolson, 1999). На русский язык не переводилась.

5 Современное значение ближе к 4 млн масс Солнца. — Прим. науч. ред.

6 Уилер лишь популяризировал термин, предложенный журналисткой Энн Юинг. — Прим. науч. ред.

7 Эта неуверенность по поводу экстремальных условий около сингулярности не подрывает нашей уверенности в существовании черных дыр или в нашем понимании их свойств. Подобным образом тайна кварков не уменьшает нашей уверенности в обычной физике атомов, которая зависит от поведения электронов на орбитах в несколько больших масштабах.

8 В 2015 г. было также обнаружено гравитационное излучение от слияния черных дыр. — Прим. науч. ред.


1
Показать комментарии (1)
Свернуть комментарии (1)

  • doctorbondarev  | 25.11.2018 | 23:41 Ответить
    Казалось бы, при чем здесь шесть камней бесконечности?
    Ответить
Написать комментарий
Элементы

© 2005–2025 «Элементы»