Майкл Файер

«Абсолютный минимум». Глава из книги

Глава 4. Фотоэлектрический эффект и объяснение Эйнштейна

В конце XIX века классическая электромагнитная теория была одним из величайших триумфов классической механики. Она могла объяснить результаты самых разнообразных экспериментальных наблюдений. Однако в начале XX века новые эксперименты создали серьезные затруднения для классического волнового представления о свете, и прежде всего один эксперимент, который вместе со своим объяснением обнаружил фундаментальную проблему в, казалось бы, нерушимой волновой теории света.

Фотоэлектрический эффект

Эксперимент, о котором идет речь, состоит в наблюдении фотоэлектрического эффекта. Суть его в том, что свет падает на поверхность металла и при определенных условиях из нее вылетают электроны. Здесь для нас электроны — это просто электрически заряженные частицы. Электрон заряжен отрицательно. (Далее мы узнаем, что электроны не являются в строгом смысле частицами по той же самой причине, по которой свет не является волнами.) Поскольку электроны — это заряженные частицы, их легко детектировать. Они могут порождать электрические сигналы в регистрирующей аппаратуре. На рис. 4.1 изображена схема фотоэлектрического эффекта, на которой входящий свет представлен как волна.

Рис. 4.1. Фотоэлектрический эффект. Свет падает на металл, и из него испускаются электроны (отрицательно заряженные частицы). В классическом представлении свет является волной, и взаимодействие этой волны с электронами в металле заставляет их вылетать

Можно измерить число электронов, выбитых из металла, и их скорость. Для конкретного металла и заданного цвета освещения, например голубого, оказывается, что электроны вылетают с определенной скоростью, а число вылетающих электронов зависит от интенсивности света. Если увеличить интенсивность, станет вылетать больше электронов, но каждый из них будет иметь все ту же скорость, независимо от интенсивности освещения. Если цвет света изменить на красный, скорость электронов уменьшится, и чем больше света смещается по спектру в сторону красного цвета, тем меньше будет скорость электронов. При достаточно сильно покрасневшем свете электроны перестают вылетать из металла.

Волновая модель не работает

Проблема для классической теории, связанная с этими наблюдениями, состоит в том, что они совершенно несовместимы с волновым описанием света. Прежде всего, рассмотрим характер зависимости от интенсивности света. При волновом описании чем выше интенсивность света, тем больше амплитуда волны. Всякий, кто имел дело с морскими волнами, знает, что маленькие волны толкают слабо, а большие — сильно. Как показано на рис. 4.2, свет низкой интенсивности — это электромагнитная волна с малой амплитудой. Такая волна должна относительно слабо «толкать» электроны. И эти электроны должны вылетать из металла с относительно низкой скоростью. Напротив, свет высокой интенсивности ассоциируется с большой амплитудой волны. Такая волна должна сильно «толкать» электроны, и они должны вылетать из металла с высокой скоростью.

Рис. 4.2. Волновая картина зависимости фотоэлектрического эффекта от интенсивности света. Свет низкой интенсивности имеет малую амплитуду волны. Поэтому волна должна относительно слабо «толкать» электроны, и они будут вылетать из металла с низкой скоростью. Свет высокой интенсивности имеет большую амплитуду волны. Большая волна должна сильно «толкать» электроны, и они будут вылетать из металла с высокой скоростью

Доведем дело до полной ясности. Световая волна связана с колеблющимся электрическим полем. Электрическое поле меняется от положительного к отрицательному, снова к положительному и опять к отрицательному с частотой, соответствующей свету. Электрон в металле тянет в одном направлении, когда поле положительно, и тащит в другом направлении, когда поле отрицательно. Эти колебания электрического поля толкают электрон взад и вперед. Согласно классической теории, если волна имеет достаточную амплитуду, она выбивает электрон из металла. Если амплитуда волны больше (интенсивность выше), она толкает электрон сильнее, и он должен вылететь из металла с более высокой скоростью. Однако наблюдается вовсе не это. Когда интенсивность света увеличивается, электроны вылетают из металла с той же самой скоростью, но при этом выбивается больше электронов.

Более того, когда свет смещается по цвету в сторону красного (то есть в сторону более длинных волн), электроны вылетают из металла с меньшей скоростью независимо от интенсивности. Хотя в волновой модели более длинноволновый свет менее энергичен, должна быть возможность, подняв интенсивность света, увеличить амплитуду волны и тем самым повысить скорость электронов, вылетающих из металла. Однако, как и с более голубыми волнами, повышение интенсивности увеличивает лишь число электронов, вылетающих из металла, но при заданном цвете (длине волны) все они вылетают с одинаковой скоростью.

Дополнительная проблема состоит в том, что, если свет достаточно сильно сместить в красную сторону спектра, электроны вообще перестают вылетать. Электроны обладают некоторой энергией связи с металлом, поскольку отрицательно заряженные электроны притягиваются к положительно заряженным ядрам атомов металла. (Атомы подробно обсуждаются, начиная с главы 9, а металлы — в главе 19.) Именно энергия связи удерживает электроны от вылетания из металла в отсутствие света. Согласно волновой картине, всегда должна быть возможность настолько поднять интенсивность света, сделав тем самым амплитуду колебаний электрического поля достаточно большой, чтобы превзойти энергию связи. Если вы стоите в полосе прибоя, то маленькая волна не собьет вас с ног, но если волны становятся все больше и больше, то в конце концов они окажутся достаточно велики для того, чтобы нарушить связь ваших ног с дном, заставив вас плыть. Однако в случае света, который достаточно сильно смещен в красную сторону, как бы ни была велика волна — связь электронов с металлом преодолеть невозможно.

Эйнштейн дает объяснение

Итог этих экспериментальных наблюдений состоит в том, что волновая модель света, которая так хорошо описывает интерференционную картину на рис. 3.4, не дает приемлемого описания фотоэлектрического эффекта. Его объяснение было дано в 1905 году Эйнштейном (Альберт Эйнштейн, 1879–1955). В 1921 году он получил Нобелевскую премию по физике «за заслуги перед теоретической физикой, и в особенности за объяснение закона фотоэлектрического эффекта». Может показаться удивительным, что Эйнштейн, известный своей теорией относительности, получил Нобелевскую премию за объяснение фотоэлектрического эффекта. Однако это был важный шаг в переходе от классической теории к квантовой. Премия Эйнштейна демонстрирует важность объяснения фотоэлектрического эффекта для современной физики.

Эйнштейн заявил, что свет состоит не из волн, а из фотонов, или квантов света. В случае фотоэлектрического эффекта фотон ведет себя скорее как частица, чем как волна. По утверждению Эйнштейна, поток света состоит из множества фотонов, каждый из которых является дискретной частицей. (Как подробно обсуждается далее, это не частицы в классическом понимании данного слова.) На рис. 4.3 показано, как один фотон «толкает» электрон и выбивает его из металла. Этот процесс в чем-то похож на то, как биток в бильярдной игре «пул» ударяет по неподвижному прицельному шару и отправляет его через весь стол. Ударяя по нему, биток передает ему энергию в кинетической форме, то есть в виде энергии движения. Столкновение приводит к тому, что биток энергию теряет, а шар, по которому он попал, приобретает. Световой луч состоит из множества фотонов, но один фотон выбивает из металла один электрон.

Рис. 4.3. Эйнштейн представил свет состоящим из дискретных квантов — «частиц» света, называемых фотонами. При фотоэлектрическом эффекте один фотон толкает один электрон и выбивает его из металла

Чем выше интенсивность света, тем больше фотонов содержит луч. Как показано на рис. 4.4, чем больше фотонов падает на металл, тем больше они выбивают из него электронов. Поскольку один фотон бьет по одному электрону, увеличение интенсивности светового пучка не приводит к изменению скорости испускаемых электронов. В пуле скорость прицельного шара зависит от того, как быстро двигался биток. Представьте себе два битка, которые одновременно с одинаковой скоростью ударяют по двум разным прицельным шарам. После удара оба прицельных шара будут двигаться с одинаковой скоростью. При увеличении числа фотонов определенного цвета, падающих на металл, из него выбивается больше электронов, но все они имеют одинаковую скорость. В отличие от волновой модели, увеличение интенсивности не приводит к усилению толчка, получаемого электроном, оно связано лишь с ростом числа фотонов, выбивающих соответственно больше электронов. Все фотоны, независимо от их количества, бьют по электронам с одной и той же силой. Поэтому электроны вылетают с одинаковой скоростью независимо от интенсивности света.

Рис. 4.4. Повышение интенсивности светового луча соответствует увеличению числа составляющих его фотонов. Большее число фотонов может толкнуть и выбить из металла больше электронов, так что повышение интенсивности приводит к росту числа электронов, вылетающих из металла

Красный свет выбивает более медленные электроны, чем голубой

Для того чтобы объяснить, почему смещение цвета в красную сторону (к более длинным волнам и меньшей энергии) приводит к уменьшению скорости вылетающих электронов, Эйнштейн использовал формулу, предложенную Планком (Макс Карл Эрнст Людвиг Планк, 1858–1947). Планк первым выдвинул идею о том, что энергия испускается дискретными порциями — квантами, когда объяснял другое связанное со светом явление, называемое излучением черного тела. Когда, например, кусок металла нагревается до высокой температуры, он начинает светиться. Так, нагревательный элемент электрокамина или калорифера светится красным. Если температура повышается, свет смещается в голубую сторону. Это относится не только к кускам металла, но также и к звездам. Красные звезды — относительно холодные. Желтые звезды, такие как наше Солнце, — горячие. Голубые звезды — очень горячие. В 1900 году классическая физика не могла объяснить количество света каждого цвета, испускаемого горячим объектом. Планк нашел объяснение, которое актуально и поныне, введя новое представление о том, что электроны в металле могут «осциллировать»1 только с определенными дискретными частотами. Энергетические ступени между этими частотами называются квантами. В 1918 году Планк получил Нобелевскую премию по физике «в знак признания услуг, которые он оказал физике своим открытием квантов энергии». От квантов энергии, открытых Планком, происходит название квантовой механики.

В своей работе Планк ввел формулу, которая связывает частоту электрона с его энергией: E = hν. В этой формуле ν — частота, обсуждавшаяся в главе 3, а h называется постоянной Планка. Ее значение h = 6,6 · 10−34 Дж · с, где Дж — единица энергии джоуль, а с — секунды. В этой формуле ν измеряется в герцах (Гц), то есть в обратных секундах (1/с); поэтому результат умножения h на ν измеряется в единицах энергии — джоулях. В своем описании излучения черного тела Планк постулировал, что энергия может изменяться только дискретными шагами. Она может быть равна hν, 2hν, 3hν и т. д., но не может принимать промежуточные значения между этими ступенями. Понимание того, что на атомном уровне энергия меняется дискретными квантами, положило начало квантовой механике.

Эйнштейн предположил, что формула Планка также применима и к фотонам, так что энергия фотона зависит от его частоты ν: E = hν. С помощью этой формулы Эйнштейн объяснил, почему красный свет порождает более медленные электроны, чем голубой. Частота красного света ниже, чем голубого. Поэтому красный фотон менее энергичен, чем голубой. Продолжая аналогию с пулом, мы понимаем, что голубой фотон сильнее толкает электрон, чем красный, и поэтому электрон приобретает более высокую скорость. При таком объяснении становится понятно, почему по мере покраснения света выбиваемые им из металла электроны становятся все медленнее.

Очень красный свет не выбивает электронов

Остается объяснить еще одно наблюдение: почему электроны перестают вылетать из металла, когда свет становится слишком красным? Эйнштейн ответил и на этот вопрос. Когда электрон выбивается из металла фотоном, у него имеется определенная кинетическая энергия. Кинетическая энергия связана с его движением. Чем выше эта энергия, тем быстрее движется электрон. Она обозначается Ek, где индекс k означает «кинетическая». Кинетическая энергия вычисляется по формуле

Ek = ½mV2,

где m — масса, а V — скорость. В таком случае скорость электрона, вылетевшего из металла, связана с его энергией, которая в свою очередь связана с энергией выбившего его фотона. Более энергичный фотон передаст электрону больше кинетической энергии, и электрон будет двигаться быстрее (с большей скоростью V).

Как уже говорилось, электроны удерживаются в металле энергией связи, обозначаемой Eb, где индекс b означает «связывание» (binding). В связи с этим часть энергии, принесенной фотоном, уходит на преодоление энергии связи. Кинетическая энергия, с которой электрон выходит из металла, равна разности энергии фотона E = hν и энергии связи Eb. Таким образом, кинетическая энергия электрона составляет Ek = hν − Eb. Чтобы электрон вылетел из металла, энергия фотона hν должна быть больше энергии связи Eb. По мере того как свет краснеет (длина волны λ увеличивается), частота ν уменьшается, поскольку ν = с/λ, где c — скорость света. При некотором достаточно красном цвете hν становится меньше Eb, и электроны больше не могут вылетать из металла. Повышение интенсивности света увеличивает число фотонов, падающих на металл, но ни один из них не имеет достаточной энергии, чтобы выбить электрон.

Тот факт, что электроны перестают вылетать из металла, когда фотоны уходят достаточно далеко в красную область (имеют достаточно низкую энергию), можно понять на примере детской уличной игры Red Rover.2 В этой игре группа детей из одной команды растягивается в шеренгу, держась за руки. Игрок из другой команды с разбегу бросается на эту шеренгу и, если бежит достаточно быстро (имеет высокую энергию), разрывает ее и продолжает двигаться, хотя и медленнее. При несколько меньшей скорости он все еще сможет прорвать шеренгу. Однако если он будет бежать достаточно медленно, то не сможет пробиться сквозь нее, поскольку энергии не хватит, чтобы преодолеть энергию связи рук в шеренге.

С какой скоростью вылетает электрон

Интересно прикинуть, с какой скоростью движется электрон, когда он вылетает из куска металла. Разные металлы имеют разную энергию связи, называемую работой выхода. Энергию связи металлов можно определить, смещая свет все дальше в красную область и наблюдая, при какой длине волны фотоны не смогут выбивать электроны. Для металлов с небольшой энергией связи предельная длина волны для выбивания электронов обычно составляет около 800 нм. Для λ = 800 нм: ν = 3,75 · 1014 Гц и Eb = hν = 2,48 · 10−19 Дж. Если светить на такой металл зеленым светом с длиной волны 525 нм, то энергия фотона составит 3,77 · 10−19 Дж. Кинетическая энергия выбитого из металла электрона будет Ek = hν − Eb = 1,30 · 10−19 Дж. Нетрудно найти скорость движения электрона из уравнения

Ek = ½meV2 = 1,30 · 10−19 Дж,

где me — масса электрона, составляющая 9,11 · 10−31 кг. Умножая уравнение для Ek на 2 и деля его на me, получаем:

V2 = 2·(1,30 · 10−19 Дж)/me =
= (2,60 · 10−19 Дж)/(9,11 · 10−31 кг) =
= 2,85 · 1011 м22.

Это значение квадрата скорости. Извлекая квадратный корень, получаем: V = 5,34 · 105 м/с, что составляет около двух миллионов километров в час. В этом примере фотоэлектрического эффекта выбитый электрон движется весьма резво.

Классическая электромагнитная теория, описывающая свет как волны, прекрасно работает применительно к огромному числу явлений, включая интерференцию, но совершенно не подходит для объяснения фотоэлектрического эффекта. Эйнштейн объяснил фотоэлектрический эффект, но теперь свет не может быть волнами. Что же тогда происходит с классическим описанием интерференции? Для примирения фотоэлектрического эффекта и интерференции нам придется вернуться к квантовой теории и котам Шрёдингера.

Глава 5. Свет: волны или частицы?

Объяснение фотоэлектрического эффекта, которое обсуждалось в главе 4, требует нового теоретического описания интерференционного эксперимента, изображенного на рис. 3.4. Для того чтобы объяснение этого эксперимента не противоречило описанию фотоэлектрического эффекта, надо отказаться от классического мышления и совершить большой скачок к мышлению квантовомеханическому. Обсуждая в главе 2 абсолютные размеры, мы говорили о том, что измерению малой в абсолютном смысле системы всегда сопутствует возмущение, которым нельзя пренебречь. Однако мы не обсуждали природу и следствия такого возмущения. Теперь пришло время вплотную заняться выяснением истинного характера материи и тем, что происходит, когда мы выполняем измерения.

Проблема, с которой мы столкнулись, состоит в том, что для объяснения явления интерференции на рис. 3.4 используются световые волны, а для объяснения фотоэлектрического эффекта, представленного на рис. 4.3 и 4.4, — «частицы света» — кванты, называемые фотонами. В классической модели световых волн для количественного описания интерференции используются уравнения Максвелла. В этой теории световая волна математически описывается волновой функцией. Функция задает ее амплитуду, частоту и пространственную локализацию. Входящая световая волна характеризуется одной волновой функцией. В классическом представлении после того как световая волна попадает на полупрозрачное расщепляющее зеркало, половина волны уходит по одному плечу интерферометра, а половина — по другому (см. рис. 3.4). Теперь есть две волны и две волновые функции — по одной для каждой волны. Эти волновые функции описывают волны, которые вдвое уступают по интенсивности первоначальной входящий волне и имеют разную локализацию — в двух плечах интерферометра. Если эти две волновые функции математически объединить для описания того, что происходит в области перекрытия, обведенной кружком на рис. 3.4, то можно рассчитать интерференционную картину. Все это так хорошо работает, что считалось, будто то же самое математическое представление может быть применимо и к фотонам.

Классическое описание интерференции не годится для фотонов

На рис. 5.1 вновь изображен интерферометр. Он точно такой же, как на рис. 3.4, за исключением того, что световой луч на этот раз состоит из фотонов. Первоначально считалось, что когда луч из фотонов падает на полупрозрачное зеркало, половина фотонов движется по первому плечу прибора и попадает на концевое зеркало 1, а другая половина идет по второму плечу интерферометра, попадая на концевое зеркало 2. Затем фотоны отражаются от концевых зеркал, и после еще одного попадания на полупрозрачное зеркало половина фотонов из каждого плеча достигает области перекрытия. Считалось, что интерференционная картина возникает тогда, когда фотоны из одного плеча прибора интерферируют с фотонами из другого плеча. Это представление, как выяснилось, является ошибочным.

В отношении описания эффекта интерференции математическая формулировка, основанная на максвелловских волновых функциях, совершенно не изменилась. Однако физический смысл волновой функции был пересмотрен. Вместо амплитуды электромагнитной волны в определенной области пространства, например в первом или втором плече интерферометра, волновая функция была переопределена как описание числа фотонов в некоторой области пространства. Прежде считалось, что волновая функция дает нам амплитуду волны в некоторой области пространства, а по этой амплитуде можно вычислить интенсивность. После переопределения стало считаться, что волновая функция говорит, сколько фотонов находится в области пространства, скажем в первом плече интерферометра, и интенсивность по-прежнему можно вычислить. Такое переопределение кажется совершенно разумным, но оно ошибочно! Само представление о том, что по каждому плечу интерферометра движется половина фотонов, является глубоким заблуждением. Для корректного описания необходимо совершить скачок к квантовомеханическому мышлению.

Рис. 5.1. Луч света состоит из фотонов, которые падают на полупрозрачное зеркало. В первоначальном ошибочном описании явления интерференции в терминах фотонов считалось, что половина фотонов проходит в каждое плечо интерферометра. Фотоны из каждого плеча попадают затем в область перекрытия, где якобы фотоны из одного плеча интерферируют с фотонами из другого плеча, порождая интерференционную картину. Мысль о том, что фотоны из одного плеча интерферируют с фотонами из другого плеча, является ошибочной

В картине, где половина фотонов движется по каждому плечу интерферометра, а затем эти половины сходятся и интерферируют между собой, много ошибочного. Простейший эксперимент, выявляющий проблему в таком описании, — это анализ зависимости интерференционной картины (см. увеличенный фрагмент на рис. 5.1 внизу справа) от интенсивности. Форма наблюдаемой интерференционной картины в области перекрытия интерферометра не зависит от интенсивности света, который послужил для ее создания. При выбранном методе регистрации (фотопленка или цифровая камера) увеличение интенсивности сокращает время, требуемое для получения качественного изображения, но рисунок на нем остается неизменным. Таким образом, интервалы между пиками и нулями интерференционной картины, а также их форма остаются без изменений.

Как говорилось в главе 3, периодичность рисунка зависит от угла пересечения лучей и от длины волны света. Она не зависит от интенсивности. Если повысить интенсивность, потребуется больше времени, чтобы картина прорисовалась, но сам узор не изменится по форме. Стандартная красная лазерная указка дает мощность 1 мВт (милливатт), то есть одну тысячную ватта, или 0,001 Дж/с (джоуль в секунду). Красный свет имеет длину волны около λ = 650 нм. Пользуясь формулами λν = c и E = hν, где h — постоянная Планка, ν — частота света, а c — скорость света, можно найти, что один фотон с длиной волны 650 нм несет энергию около 3 · 10−19 Дж. Таким образом, лазерная указка мощностью 1 мВт испускает около 3 · 1015 (трех тысяч триллионов) фотонов в секунду. Если использовать их как входящий пучок интерферометра, то зарегистрировать интерференционную картину будет очень просто, даже если интервал между ее максимумами достаточно велик (см. обсуждение этого интервала в главе 3 после рис. 3.4), и вы даже сможете увидеть интерференционную картину своими глазами.

Представьте себе, что интенсивность света начинает постепенно уменьшаться. Вскоре вы уже не сможете разглядеть интерференционную картину, поскольку глаз — не очень чувствительный детектор света, но ее по-прежнему можно зарегистрировать на фотопленку или с помощью цифровой камеры. Зафиксированный узор при этом останется неизменным. Если уменьшить интенсивность в 3000 раз — до триллиона фотонов в секунду, — рисунок останется прежним. В описании, согласно которому половина фотонов следует по одному плечу интерферометра, а другая половина — по второму, полтриллиона фотонов пойдет по первому плечу и полтриллиона — по второму. Понизьте интенсивность до миллиарда фотонов в секунду — узор останется тем же. Дальнейшее уменьшение интенсивности до миллиона фотонов в секунду также ничего не меняет. И вот тут ошибочность описания становится очевидной. Снизьте интенсивность света так, чтобы лишь один фотон в секунду входил в прибор, — изображение вновь не изменится. С одним фотоном в секунду потребуется долгое время накапливать сигнал, чтобы увидеть интерференционную картину, но если набраться терпения и подождать, рисунок будет тот же самый.

Когда в интерферометр входит всего один фотон в секунду, внутри прибора находится лишь один фотон. Ему требуется порядка одной стомиллионной доли секунды (10−8 с), чтобы пройти через интерферометр. При интенсивности света один фотон в секунду нет фактически ни единого шанса обнаружить внутри инструмента более одного фотона за раз, и тем не менее если получить интерференционную картину, она окажется в точности такой же. Однако модифицированное классическое описание эффекта интерференции в терминах фотонов говорит, что половина фотонов идет по первому плечу прибора, а половина — по второму. Фотоны из первого плеча интерферируют с фотонами из второго плеча и порождают интерференционную картину. Если в каждый момент времени внутри прибора имеется лишь один фотон, то там нет другого фотона, с которым он мог бы интерферировать. Модель, согласно которой по каждому плечу прибора идет половина фотонов, предсказывает, что интерференционная картина должна исчезать при достаточно низкой интенсивности света. Но она не исчезает. Данная модель ошибочна!

Новое описание фотонов в интерферометре

Вот здесь-то и требуется полное изменение мышления, возвращающее нас к котам Шрёдингера. Как может возникать интерференционная картина, если в каждый момент в интерферометр входит лишь один фотон? Наше понимание этой проблемы и природы квантовой механики в целом основывается на концептуальной интерпретации математического формализма, тесно связанного с работой Макса Борна (1882–1970). Борн получил Нобелевскую премию по физике в 1954 году «за фундаментальные исследования по квантовой механике, в особенности за статистическую интерпретацию волновой функции». Эту интерпретацию часто называют копенгагенской.

Корректное описание эксперимента с интерферометром состоит в том, что каждый фотон движется по обоим плечам интерферометра. Это и есть наш большой скачок. Одиночный фотон встречает полупрозрачное зеркало. Значит, с 50-процентной вероятностью фотон отразится и пойдет по первому плечу интерферометра (см. рис. 5.1), а с 50-процентной вероятностью — по второму плечу. Это ошибка. Когда фотон встречает зеркало — разделитель пучка, — его состояние меняется. Если фотон действительно движется по первому плечу, назовем это состояние движения «трансляционным состоянием 1», сокращенно T1. Если фотон движется по второму плечу, назовем это состояние движения «трансляционным состоянием 2», сокращенно T2. После взаимодействия фотона с разделителем пучка он не находится ни в состоянии T1, ни в состоянии T2. Состояние системы после разделителя пучка называют состоянием суперпозиции. Это смесь состояний T1 и T2 в равных пропорциях. В некотором смысле фотон одновременно находится в состояниях T1 и T2. Это звучит по-настоящему странно. Одиночный фотон находится в двух областях пространства одновременно. Он пребывает в трансляционном состоянии T = T1 + T2 — суперпозиции, в которой поровну смешаны состояния T1 и T2.

Фотон находится в этой суперпозиции трансляционных состояний T = T1 + T2, поскольку именно это о нем известно. Он с 50-процентной вероятностью находится в первом плече (T1) и с 50-процентной вероятностью — во втором (T2). Борновская интерпретация волновой функции заключается в том, что это не реальная волна в смысле амплитуды колеблющегося электромагнитного поля. Правильнее говорить, что волновая функция описывает «амплитуду вероятности волны». Ошибочная интерпретация волновой функции в терминах фотонов состоит в том, что она якобы говорит, сколько фотонов находится в каждом плече прибора, то есть сколько фотонов пребывает в некоторой области пространства. Правильная интерпретация состоит в том, что волновая функция фотона говорит о вероятности обнаружения фотона в этой области пространства.

Может показаться, что различие между ошибочной и правильной интерпретациями незначительно, однако, как подробно объясняется далее, оно фундаментально меняет наше представления о природе. В классическом описании света его интенсивность пропорциональна абсолютному значению квадрата амплитуды электрического поля, которая, в свою очередь, задается амплитудой волновой функции. В борновской интерпретации возведенная в квадрат абсолютная величина волновой функции для определенной области пространства дает вероятность обнаружения частицы, в нашем случае фотона, в этой области пространства.

Фотон интерферирует сам с собой

При попадании фотона на разделитель пучка рождаются две волны амплитуды вероятности: одна в первом плече, другая — во втором. В целом волна амплитуды вероятности T является суперпозицией волн амплитуды вероятности T1 и T2. Встретившись с разделителем, каждый отдельный фотон попадает в состояние T1 + T2. Поскольку за разделителем есть две волны амплитуды вероятности, они пересекаются в области перекрытия. С одиночным фотоном внутри интерферометра связаны две волны — T1 и T2. Интерференция этих двух волн определяет высокую вероятность обнаружить фотон вблизи пика интерференционной картины и низкую вероятность обнаружить фотон вблизи ее нуля. Фотон интерферирует сам с собой, поскольку в интерферометре он состоит из двух волн, и эти две волны могут интерферировать друг с другом. Так как после прохождения разделителя пучка каждый отдельный фотон попадает в состояние суперпозиции T1 + T2, снимается проблема, связанная с низкой интенсивностью света. Одиночный фотон, входя в прибор, порождает две волновые функции, две волны амплитуды вероятности в интерферометре. Поэтому всегда есть пара волн, порождающих интерференционную картину.

Фотон может находиться в двух местах сразу

Первая естественная реакция человека с классическим мышлением на борновскую интерпретацию: «Это безумие какое-то!» Мы что, действительно верим, будто один фотон может находиться в двух местах сразу? После разделителя пучка порождается состояние T1 + T2. Это состояние означает, что в некотором смысле фотон одновременно находится в обоих плечах прибора. Если поместить детектор в плечо 1, чтобы посмотреть, сколько там света, то обнаружится, что туда прошла половина света. Однако это не та информация, которая нам нужна. Возможно, половина фотонов пошла по каждому плечу, и мы видим эту половину, или, возможно, имеется 50-процентная вероятность того, что каждый фотон прошел в каждое плечо. В этом случае мы тоже увидим половинную интенсивность. Правильный эксперимент состоит в использовании настолько слабого света, что в каждый момент внутри прибора находится лишь один фотон.

Рассмотрим эксперимент, в котором интерферометр обстреливается одиночными фотонами. Будем использовать фотодетектор, настолько чувствительный, что он способен зарегистрировать отдельный фотон. Это легко достижимо с помощью научного эквивалента цифровой суперкамеры. Поместим детектор в первое плечо интерферометра. Фотон входит в прибор, и мы регистрируем его. Мы наблюдаем фотон целиком, а не его половину. Другой фотон входит в прибор, но мы его не видим. Пять фотонов входит в прибор. Мы регистрируем два из них, а остальные три не замечаем. Продолжая в том же духе достаточно долго, мы обнаруживаем, что детектор в левом плече прибора регистрирует 50% фотонов. Мы также видим, что никакой интерференционной картины не возникает. Фактически наблюдается одно светлое пятно (без периодически меняющегося рисунка) в той области, где раньше возникала интерференционная картина.

Наблюдение вызывает непренебрежимо малое возмущение, приводящее к изменению состояния

Что же происходит? Попадая на разделитель пучка, фотон оказывается в состоянии суперпозиции T1 + T2. Однако фотоны — это частицы, малые в абсолютном смысле. Акт их наблюдения вызывает непренебрежимо малое возмущение. Помещая фотодетектор в первое плечо прибора, мы производим наблюдение местоположения фотона. Этот акт наблюдения заставляет систему перескочить из состояния суперпозиции T1 + T2 в одно из чистых состояний — либо T1, либо T2. Волновая функция суперпозиции «коллапсирует» в одно из чистых состояний, из которых складывается эта суперпозиция. Если система перескакивает в состояние T1, то фотон регистрируется. И конечно, попав в фотодетектор, он уже не распространяется дальше по интерферометру. Если фотон перескакивает в состояние T2, он не регистрируется фотодетектором, расположенным в первом плече, и продолжает двигаться дальше, достигая в конце концов области, подготовленной к регистрации интерференционной картины. Однако, поскольку этот фотон находится в чистом состоянии T2, то имеется лишь одна волна амплитуды вероятности. Когда она достигает области «перекрытия» (на рис. 5.1 внизу), там нет другой волны амплитуды вероятности, с которой могла бы возникнуть интерференция. Поэтому никакой интерференционной картины не появляется. Одиночное пятно образуется, когда каждый фотон, пройдя через прибор в чистом состоянии T2, подобно пуле, попадает в это пятно на детекторе. Размер пятна такой же, как размер (диаметр) исходного светового пучка, вошедшего в прибор, и в нем нет пространственных колебаний, характерных для интерференционной картины.

Возвращаемся к котам Шрёдингера

Наблюдение местоположения фотона с помощью фотодетектора в первом плече интерферометра заставляет фотон перескочить из состояния суперпозиции T1 + T2 в чистое состояние — либо T1, либо T2. Однако единственное измерение не позволяет узнать, какое состояние будет получено в результате наблюдения. Шансы получить T1 или T2 составляют 50 на 50. После многочисленных измерений мы знаем, что вероятность перескакивания в состояние T1 равна 50%, но невозможно заранее сказать, что случится в конкретном единичном наблюдении. Это настоящее физическое проявление ситуации, которую мы обсуждали в главе 1 на примере котов Шрёдингера, когда в каждом из 1000 ящиков было по коту. Каждый кот находился в состоянии суперпозиции — на 50% живой и на 50% мертвый. В этом совершенно нефизическом, но способствующем пониманию сути вопроса сценарии при вскрытии ящика выполнялось наблюдение состояния здоровья кота. Иногда он оказывался совершенно здоровым, иногда — мертвым. После вскрытия всех ящиков было определено, что вероятность обнаружить живого кота составляет 50%, но нет способа предсказать до вскрытия конкретного ящика, то есть до выполнения отдельного наблюдения, живой или мертвый кот будет там найден. До вскрытия ящика кот находится в состоянии суперпозиции живого и мертвого в пропорции 50 : 50. Акт выполнения наблюдения порождает непренебрежимое возмущение и заставляет состояние суперпозиции перескочить в одно из чистых состояний — либо живое, либо мертвое. Как говорилось в главе 1, состояние суперпозиции живого/мертвого кота не существует и не может существовать, но интерферометр — это реальный пример той идеи, иллюстрацией которой служат коты Шрёдингера.

С помощью полупрозрачного зеркала фотон легко привести в состояние суперпозиции, представляющее собой смесь 50 на 50 двух трансляционных состояний. Когда фотон находится в состоянии суперпозиции, невозможно сказать, движется он по первому или по второму плечу прибора. Можно лишь сказать, что если мы выполним измерение, чтобы узнать, где фотон находится, это вызовет возмущение, которым невозможно пренебречь. Данное возмущение приведет к тому, что состояние системы изменится, и, вместо того чтобы быть в обоих плечах интерферометра с равной вероятностью, фотон окажется либо в одном из них, либо в другом. Интерференционная картина рождается, когда волны амплитуды вероятности фотона интерферируют друг с другом. Две компоненты состояния суперпозиции — T1 и T2, из которых складывается совокупная волна амплитуды вероятности для фотона в приборе, — интерферируют друг с другом. Если выполняется наблюдение, позволяющее узнать, где находится фотон, он будет найден либо в первом, либо во втором плече интерферометра. Однако сам факт наблюдения меняет систему так, что она более не находится в состоянии суперпозиции. Амплитуда вероятности больше не состоит из двух частей, которые могут интерферировать друг с другом, и интерференционная картина исчезает. Таким образом, фотон в интерферометре — это реальное проявление идей, связанных с котами Шрёдингера.

Возвращаемся к фотоэлектрическому эффекту

В главе 4 фотоэлектрический эффект описывается в терминах фотонов, которые являются частицами, ведущими себя в некотором смысле наподобие световых пуль. Один фотон ударяет по одному электрону и выбивает его из куска металла (см. рис. 4.3). Это описание фотоэлектрического эффекта показывает, что классическое представление о свете как об электромагнитных волнах неверно. Для того чтобы объяснить фотоэлектрический эффект и одновременно тот факт, что фотоны порождают интерференционную картину, потребовалось ввести новую концепцию. Борновская интерпретация волновой функции как волны амплитуды вероятности придает фотону необходимые волноподобные характеристики, так что фотоны способны порождать интерференционную картину. Однако при обсуждении волн амплитуды вероятности в применении к интерферометру мы характеризовали положение фотона лишь с точностью до выбора одной из двух больших областей пространства; фотон находился в состоянии суперпозиции T1 + T2 с равной вероятностью оказаться в первом или во втором плече интерферометра.

Фотоэлектрический эффект предполагает, что фотон весьма мал. В главе 6 будет показано, как суперпозиция волн амплитуды вероятности может породить фотон, имеющий очень маленькие размеры. Эти идеи приведут нас к центральному и самому неклассическому аспекту квантовой механики — принципу неопределенности Гейзенберга.

Глоссарий

Абсолютный размер. Объект велик или мал не по сравнению с другим объектом, но по сравнению с неустранимым минимальным возмущением, которое сопровождает любое измерение. Если это возмущение пренебрежимо мало, объект является большим в абсолютном смысле. Если неустранимое минимальное возмущение не является пренебрежимо малым, то объект абсолютно мал.

Ангстрем. Единица длины, равная 10–10 м (одна десятимиллиардная метра). Ангстрем обозначается символом Å.

Анион. Атом или молекула с отрицательным зарядом, например Cl (анион хлора). Анион образуется при добавлении одного или нескольких отрицательно заряженных электронов к нейтральному атому или молекуле.

Атомная орбиталь. Название волновой функции (волны амплитуды вероятности), которая описывает распределение вероятности электрона вокруг атомного ядра.

Атомный номер. Число протонов (положительно заряженных частиц) в атомном ядре. Нейтральный атом (не ион) имеет такое же число электронов (отрицательно заряженных частиц), как и протонов.

Вектор. Направленный отрезок, обычно изображаемый в виде стрелки. Вектор — это величина, которая характеризуется абсолютным значением и направлением. Если говорится, что автомобиль движется со скоростью 60 километров в час, то скорость не является вектором. Если говорится, что автомобиль движется со скоростью 60 километров в час на север, то скорость является вектором, поскольку характеризуется значением (60 километров в час) и направлением (на север).

Возбужденное состояние. Состояние атома или молекулы, которое обладает более высокой, чем минимальная, энергией. Возбужденное состояние возникает, когда атом или молекула, начиная с состояния наименьшей энергии, поглощает фотон подходящей частоты, чтобы перевести систему на энергетический уровень выше самого низкого, называемого основным состоянием. Возбужденные состояния могут также порождаться теплом или другими механизмами, передающими энергию атому или молекуле.

Волна амплитуды вероятности. Квантовомеханическая волна (волновая функция), описывающая вероятность обнаружения частицы в определенной области пространства. Волна амплитуды вероятности может принимать положительные и отрицательные значения. Вероятность обнаружить частицу в некоторой области пространства определяется квадратом (строго говоря, квадратом абсолютной величины) волны амплитуды вероятности. Чем больше это значение в некоторой области пространства, тем выше вероятность того, что частица будет там обнаружена.

Волновая функция. Решение уравнения Шрёдингера для конкретного состояния системы, например атома или молекулы. Волновая функция — это волна амплитуды вероятности. Она дает информацию о возможности обнаружить частицу в конкретной области пространства. Например, волновая функция атома водорода дает вероятность обнаружения электрона на различных расстояниях и в различных направлениях от ядра.

Волновой пакет. Суперпозиция волн, которые, объединяясь, дают частицу, более или менее локализованную в некоторой области пространства. Суперпозиция волн имеет области конструктивной и деструктивной интерференции. Вероятность обнаружить частицу велика там, где интерференция конструктивна. Суперпозиция волн более или менее локализует частицу в некоторой области пространства. Эта локализация не может быть идеальной в силу принципа неопределенности Гейзенберга.

Гибридные атомные орбитали. Комбинации (суперпозиции) атомных орбиталей, которые порождают новые атомные орбитали другой формы. Гибридные атомные орбитали важны при образовании химических связей. Гибридные атомные орбитали образуются для соединения атомов в молекулы с наименьшей энергией (наиболее стабильные молекулы). Формы молекул определяются формой гибридных орбиталей.

Двойная связь. Химическая связь, в которой две пары электронов совместно используются двумя атомами. Двойная связь сильнее и короче, чем одиночная связь.

Деструктивная интерференция. Волны объединяются (складываются друг с другом) таким образом, что общая амплитуда новой волны убывает. Для волн разной длины деструктивная интерференция происходит только в некоторых областях пространства. Волна может быть большой в некоторых областях за счет конструктивной интерференции и сходить на нет в остальных местах из-за деструктивной интерференции.

Джоуль. Единица энергии: 1 джоуль (Дж) — это произведение метра на килограмм в квадрате, деленное на секунду в квадрате (Дж = м · кг22).

Длина волны де Бройля. Длина волны, ассоциированная с частицей, имеющей массу. Для любой частицы существует длина волны де Бройля. Для больших частиц, таких как бейсбольный мяч, дебройлевская длина волны настолько мала, что ею можно пренебречь. Столь большие частицы никогда не ведут себя как волны. Для малых частиц (электронов и т. п.) длина волны сравнима с их размерами, и поэтому малые частицы могут проявлять волноподобные свойства.

Длина волны. Расстояние, на котором волна повторяется, то есть расстояние от одного пика волны до другого.

Допущение Дирака. Минимальное возмущение сопровождает любое измерение. Это возмущение не является следствием экспериментального метода, но присуще самой природе. Никакое усовершенствование техники не сможет его устранить. Если это минимальное возмущение пренебрежимо мало, то частица является большой в абсолютном смысле. Если оно не является пренебрежимо малым, то частица абсолютно мала. Допущение Дирака было подтверждено многочисленными экспериментами и является ключевой идеей для квантовой теории.

Замкнутая конфигурация электронной оболочки. Для атома имеется определенное число электронов, связанных с ядром, которое соответствует одному из благородных газов, занимающих самую правую колонку в Периодической таблице. Замкнутая конфигурация электронной оболочки чрезвычайно устойчива. Благородные газы называют также инертными, поскольку, имея замкнутую конфигурацию оболочки, они химически практически инертны. Атом может обрести замкнутую конфигурацию оболочки, присоединив или отдав электроны и превратившись в ион либо путем совместного использования электронов с другим атомом в рамках ковалентной связи.

Импульсное собственное состояние. Состояние частицы с точно определенным импульсом. Импульсному собственному состоянию свободной частицы, такой как фотон или электрон, соответствует волновая функция, делокализованная по всему пространству. Импульс может быть точно известен при условии, что положение является совершенно неопределенным. Импульсные собственные состояния могут входить в суперпозицию (складываться друг с другом), образуя волновые пакеты, которые имеют более или менее хорошо определенное положение.

Инертные газы (благородные газы). Атомы, такие как гелий, неон, аргон и т. п., которые обладают замкнутой конфигурацией электронной оболочки. Они занимают правый столбец в Периодической таблице элементов. Благодаря замкнутой конфигурации оболочки они химически почти полностью инертны. Они не создают связей с другими атомами для образования молекул.

Интерпретация Борна. Описание квантовомеханических волновых функций как волн амплитуды вероятности. Интерпретация Борна, также называемая копенгагенской интерпретацией, утверждает, что квантовомеханические волновые функции, получаемые при решении уравнения Шрёдингера, описывают вероятность обнаружения частицы в определенной области пространства.

Интерференция волн. Объединение двух или большего числа волн, порождающее новую волну. В некоторых областях пространства волны могут интерферировать конструктивно, что приводит к увеличению амплитуды волны, а в других областях пространства они могут интерферировать деструктивно, что приводит к уменьшению амплитуды или обращению ее в нуль.

Катион. Положительно заряженный атом или молекула, например Na+ (катион натрия). Катион — это ион, образующийся при отрыве одного или нескольких отрицательно заряженных электронов от нейтрального атома или молекулы.

Квантованные энергетические уровни. Энергетические уровни, образующие дискретные ступени, когда энергия не может изменяться непрерывным образом. Атомы и молекулы имеют квантованные энергетические уровни.

Квантовое число. Число, определяющее состояние квантовомеханической системы. Для полного описания состояния системы может потребоваться более одного квантового числа. В атоме каждый электрон имеет четыре квантовых числа: n, l, m и s, которые могут принимать лишь определенные значения. Квантовые числа возникают из математического описания квантовомеханических систем.

Кинетическая энергия. Энергия, связанная с движением. Движущаяся частица обладает кинетической энергией, равной половине произведения ее массы на квадрат ее скорости: Ek = mV2/2.

Классическая механика. Теория вещества и света, разработанная до появления квантовой механики. Рассматривает размер как относительную величину и не может описывать абсолютно малые частицы (электроны, фотоны и т. п.). Это мощная теория, которая безупречно работает при описании больших объектов — мостов, самолетов, траекторий ракет.

Классические волны. Волны, подобные волнам на воде или звуковым волнам, которые можно описывать с помощью классической механики. Электромагнитные волны, которые являются описанием света в классической механике, также относятся к категории классических волн. Классическое описание света как волн хорошо работает для радио и других типов волн, но не может корректно описать корпускулярную природу света (фотонов), ответственную за такие явления, как фотоэлектрический эффект.

Ковалентная связь. Химическая связь, которая удерживает атомы вместе за счет того, что они совместно используют электроны.

Коллапс волновой функции. Состояние системы часто является суперпозицией волновых функций. Каждая волновая функция соотносится с определенным значением наблюдаемой величины, например энергии. Поскольку суперпозиция состоит из множества волновых функций, она ассоциирована с множеством значений наблюдаемой величины. Когда выполняется измерение, система переходит из состояния суперпозиции волновых функций к одной волновой функции с одним значением наблюдаемой величины (например, энергии). Об этом говорят, что измерение вызывает коллапс волновой функции из состояния суперпозиции в чистое состояние с одним значением наблюдаемой величины. Невозможно заранее сказать, в какое состояние сколлапсирует суперпозиция. Поэтому невозможно предсказать, какое значение наблюдаемой величины будет измерено.

Конструктивная интерференция. Волны объединяются (складываются друг с другом) таким образом, что общая амплитуда новой волны возрастает. Для волн разной длины конструктивная интерференция происходит только в некоторых областях пространства. За счет конструктивной интерференции волна может быть большой в одной области и сходить на нет в остальных местах.

Кулоновское взаимодействие. Взаимодействие между электрически заряженными частицами, которое убывает с увеличением расстояния. Взаимодействие уменьшается обратно пропорционально квадрату расстояния. Кулоновское взаимодействие заставляет противоположно заряженные частицы (такие, как электрон и протон) притягиваться друг к другу; одинаково заряженные частицы, наоборот, отталкиваются (два электрона или два протона).

Молекулярная орбиталь. Волновая функция для молекулы, составленная из комбинации атомных орбиталей (атомных волновых функций), которая распространяется на всю молекулу. Молекулярные орбитали (МО) могут быть связывающими (связывающие МО). Электроны, находящиеся на связывающих МО, уменьшают энергию молекулы. Молекулярные орбитали также могут быть разрыхляющими (разрыхляющие МО). Электроны, находящиеся на разрыхляющих МО, увеличивают энергию молекулы. Для получения устойчивой молекулы на связывающих МО должно быть больше электронов, чем на разрыхляющих МО.

Нанометр. Единица длины, равная одной миллиардной доле метра (10−9 м).

Неподеленная пара. Пара электронов в молекуле, которая занимает атомную орбиталь, но не участвует в образовании химической связи. Неподеленные пары электронов не используются атомами совместно.

Одиночная связь. Химическая связь, которая удерживает вместе два атома за счет одной совместно используемой пары электронов.

Оптический переход. Изменение состояния с одного энергетического уровня на другой в атоме или молекуле, вызванное поглощением или излучением света.

Орбиталь. Другое название для квантовомеханической волновой функции, описывающий электрон или пару электронов в атоме или молекуле. Атом обладает атомными орбиталями, а молекула — молекулярными орбиталями.

Основное состояние. Самое низкое энергетическое состояние атома или молекулы. Возбужденное состояние порождается, когда атом или молекула, находясь в основном состоянии, поглощает фотон с частотой, подходящей для перевода системы на энергетический уровень выше минимального, то есть основного, состояния. Возбужденное состояние может порождаться теплом и другими механизмами передачи энергии атому или молекуле.

Поглощение света. Процесс, при котором количество света уменьшается, а энергия объекта увеличивается. Свет (фотоны, частицы света) определенной частоты (цвета) заставляет объект перейти в квантовое состояние с более высокой энергией. Это увеличение энергии объекта в точности совпадает с уменьшением энергии света. Поглощение света объектами обусловливает их цвет.

Постоянная Планка. Фундаментальная постоянная квантовой теории, обозначаемая буквой h. Она входит во многие математические уравнения, используемые в квантовой механике. Например, в соответствии с уравнением Е = hν энергия равна произведению частоты (ν) и постоянной Планка. Значение постоянной Планка составляет: h = 6,6 · 10−34 Дж · с. Планк ввел эту постоянную в 1900 году в своем объяснении чернотельного излучения.

Потенциальная яма. Область пространства, в которой энергия уменьшается вследствие какого-либо типа притягивающего взаимодействия. Яма в земле является гравитационной потенциальной ямой. Мяч падает на ее дно, уменьшая свою гравитационную потенциальную энергию. Чтобы поднять мяч из ямы, необходимо затратить энергию. Электроны удерживаются атомами в кулоновской потенциальной яме, то есть за счет электрического притяжения отрицательно заряженных электронов к положительно заряженным ядрам. Требуется затратить энергию, чтобы оторвать электрон от атома. Затратив достаточное количество энергии, можно поднять электрон из кулоновской потенциальный ямы, созданной притяжением положительно заряженного ядра.

Принцип запрета Паули. Принцип, согласно которому на одной атомной или молекулярной орбитали может находиться не более двух электронов. Если на одной орбитали находятся два электрона, то они должны иметь противоположные спины, то есть разные электронные квантовые числа s (одно +½, а другое −½). Принцип запрета Паули важен при определении структуры Периодической таблицы элементов и свойств атомов и молекул.

Принцип неопределенности Гейзенберга. Нельзя одновременно точно знать импульс и положение частицы. Если импульс частицы известен точно, то ее положение совершенно неопределенно, то есть не может быть никакой информации о ее местоположении. Если же точно известно ее положение, то не может быть никакой информации о величине импульса. В общем случае принцип Гейзенберга утверждает, что положение и импульс могут быть известны только с определенной степенью погрешности. Это неотъемлемое свойство природы, а не следствие измерительных ошибок.

Принцип суперпозиции. «Когда система находится в одном состоянии, ее всегда можно рассматривать как находящуюся частично в каждом из двух или более других состояний». В соответствии с этим квантовомеханическим принципом система в конкретном квантовом состоянии может быть описана как суперпозиция (сумма) двух или более других состояний. На практике это обычно означает, что конкретная волновая функция может быть выражена как сумма двух или более других волновых функций. Например, волновые функции для молекул можно образовать как суперпозицию атомных волновых функций. Фотонный волновой пакет можно образовать как суперпозицию импульсных собственных состояний.

Пространственное распределение вероятности. Характеризует вероятность обнаружить частицу, такую как электрон, в различных областях пространства. Пространственное распределение вероятности можно вычислить на основе квантовомеханической волновой функции частицы.

Протон. Субатомная частица, имеющая положительный заряд — одна из фундаментальных составляющих атомов и молекул. Положительный заряд протона равен по величине отрицательному заряду электрона. Атом содержит одинаковое число электронов и протонов, так что в целом он не имеет электрического заряда. Число протонов в атомном ядре, называемое атомным номером, определяет заряд ядра. Разные атомы (элементы) имеют разное число протонов в ядре.

Размер абсолютный. Объект велик или мал в абсолютном смысле в зависимости от того, является неустранимое минимальное возмущение, сопровождающее измерение, пренебрежимо малым или нет. Если минимальное возмущение пренебрежимо мало, то объект является большим в абсолютном смысле. Если оно не является пренебрежимо малым, то объект абсолютно мал. Абсолютно малые объекты могут описываться квантовой механикой, но не классической механикой.

Размер относительный. Размер, определяемый сравнением одного объекта с другим. Объект может быть велик или мал относительно другого объекта. В классической механике предполагается, что размер является относительным. Классическая механика не может описывать объекты, которые малы в абсолютном смысле.

Световой квант. Отдельная частица света. Фотон.

Свободная частица. Частица, на которую не действуют никакие силы. Движение свободной частицы будет прямолинейным, поскольку отсутствуют силы, такие как гравитация или сопротивление воздуха, которые влияли бы на ее траекторию.

Собственное состояние. Чистое состояние системы, ассоциированное с точно определенным значением наблюдаемой, которое называется собственным значением. Находясь в энергетическом собственном состоянии, система, такая, например, как атом водорода, обладает строго определенной энергией. Атом водорода имеет множество различных энергетических собственных состояний, которым соответствуют различные значения энергии (собственные значения энергии). Система в импульсном собственном состоянии имеет точно определенное значение импульса. Каждому собственному состоянию соответствует волновая функция. Собственные состояния — это фундаментальные состояния в квантовой теории.

Спектроскопия. Экспериментальное измерение количества света на разных длинах волн, поглощаемого или излучаемого системой атомов или молекул.

Тройная связь. Химическая связь, которая удерживает вместе два атома за счет трех совместно используемых пар электронов. Тройная связь короче и сильнее (требует больше усилий для разрыва), чем двойная или одиночная связь.

Углеводороды. Молекулы, состоящие только из углерода и водорода, такие как метан (природный газ) и компоненты нефти.

Узел. Для одномерной волны это точка, где амплитуда волны равна нулю. Для трехмерной волны это плоскость или другая поверхность, где амплитуда волны равна нулю. При пересечении узла знак волновой функции меняется. В квантовой механике узел волновой функции, описывающей частицу, такую как электрон, — это место, где вероятность обнаружить частицу равна нулю.

Уравнение Шрёдингера. Фундаментальное уравнение квантовой теории. Решение уравнения Шрёдингера для атома или молекулы дает квантованные энергетические уровни и волновые функции, описывающие амплитуду вероятности обнаружения электрона в разных точках пространства в атоме или молекуле.

Фаза. Положение в пределах одного цикла волны. Пик волны (точка максимальной положительной амплитуды) принимается за фазу 0 градусов (0°), ближайший следующий за ней узел (точка, где амплитуда равна нулю) — это 90°. Фаза 90° — это четверть цикла волны. Фаза 180° соответствует половине цикла. Это точка максимальной отрицательной амплитуды. О двух волнах одинаковой длины говорят, что они сдвинуты по фазе, если их пики не совпадают.

Формула Ридберга. Ранняя эмпирическая формула, описывающая цвета излучения, испускаемого и поглощаемого атомами водорода.

Фотон. Частица света.

Фотоэлектрический эффект. Объясненный Эйнштейном эффект, при котором одиночная частица света — фотон — выбивает из куска металла один электрон. Эйнштейновское объяснение фотоэлектрического эффекта показало, что свет не является волной, как его описывает классическая электромагнитная теория.

Функция радиального распределения. Математическая функция, которая описывает вероятность обнаружения электрона на определенном расстоянии от ядра атома независимо от направления. Она получается из волновой функции электрона в атоме.

Частица в ящике. Квантовомеханическая задача, в которой частица, такая как электрон, заключена в одномерном ящике с бесконечно высокими непроницаемыми стенками. Энергетические уровни частицы в ящике квантуются, то есть для нее существуют дискретные энергетические уровни. Частица в ящике — это простейшая квантовомеханическая задача, в которой частица заключена в небольшой области пространства и имеет квантованные уровни энергии.

Частота. Число повторов регулярного события в единицу времени. Для волны частота — это число пиков волны, которые проходят мимо за определенное время. Для волн, движущихся с одинаковой скоростью, высокая частота соответствует коротким волнам, а низкая частота — длинным волнам. Длина волны — это расстояние между пиками волны. Для световых (электромагнитных) волн частота равна скорости света, деленной на длину волны.

Чернотельное излучение (излучение абсолютно черного тела). Свет, испускаемый горячим объектом. Цвет этого света зависит от температуры объекта. Чернотельное излучение — это первое физическое явление, при описании которого Максом Планком в 1900 году были использованы идеи, которые впоследствии легли в основу квантовой механики.

Электромагнитная волна. Волна, состоящая из электрического и магнитного полей, которые колеблются с одинаковой частотой и распространяются со скоростью света. Электромагнитные волны — это описание света в классической механике. Классическая теория электромагнитных волн полезна в описании многих свойств света и радиоволн, но она не может описать многие явления, такие как фотоэлектрический эффект.

Электрон. Субатомная частица с отрицательным зарядом, одна из фундаментальных составляющих атомов и молекул. Отрицательный заряд электрона равен положительному заряду протона, но противоположен по знаку. Атом содержит одинаковое число электронов и протонов, так что в целом он не имеет электрического заряда. Добавление электрона к атому превращает его в анион с единичным отрицательным зарядом. Отдавая электрон, атом становится катионом с единичным положительным зарядом.

Энергетические уровни. В атомах, молекулах и других квантовых абсолютно малых системах энергия не является непрерывной величиной. Изменения энергии могут происходить только дискретными шагами. Каждое отдельное дискретное значение энергии называется энергетическим уровнем.


1 Колебаться. — Примеч. пер.

2 В нашей стране эта игра носит название «Али-Баба». — Примеч. пер.


1
Показать комментарии (1)
Свернуть комментарии (1)

  • lexabelic  | 20.04.2017 | 19:00 Ответить
    "Джоуль. Единица энергии: 1 джоуль (Дж) — это произведение метра на килограмм в квадрате, деленное на секунду в квадрате (Дж = м · кг2/с2)."

    [Дж]=[кг*м^2/c^2]
    Ответить
Написать комментарий
Элементы

© 2005–2025 «Элементы»