Дмитрий Зигфридович Вибе,
доктор физико-математических наук, Институт астрономии РАН (ИНАСАН)
«Химия и жизнь» №2, 2014

Астрохимия межзвездного вещества

Космос в популярном сознании представляется царством холода и пустоты (помните песню: «Здесь холод космический, цвет неба иной»?). Однако примерно с середины XIX века исследователи стали понимать, что пространство между звездами по крайней мере не пусто. Наглядный признак существования межзвездного вещества — так называемые темные облака, бесформенные черные пятна, особенно хорошо различимые на светлой полосе Млечного Пути. В XVIII–XIX веках полагали, что это реальные «дырки» в распределении звезд, однако к 1920-м годам сложилось мнение: пятна выдают присутствие колоссальных облаков межзвездной пыли, которые мешают нам видеть свет расположенных за ними звезд (фото 1).

Фото 1. Темная туманность B69, часть обширного облака межзвездной пыли в созвездии Змееносца. Фото с сайта www.eso.org

Фото 1. Темная туманность B69, часть обширного облака межзвездной пыли в созвездии Змееносца. Фото с сайта www.eso.org

В середине XIX века началась новая эпоха в астрономии: благодаря работам Густава Кирхгофа и Роберта Бунзена появился спектральный анализ, позволивший определять химический состав и физические параметры газа в астрономических объектах. Астрономы быстро оценили новую возможность, и 1860-е годы стали временем бурного расцвета звездной спектроскопии. Одновременно, во многом благодаря усилиям замечательного наблюдателя Уильяма Хеггинса, накапливались и доказательства наличия газа не только в звездах, но и в пространстве между ними.

Хеггинс был пионером научных исследований незвездной материи. С 1863 года он публиковал результаты спектроскопического исследования некоторых туманностей, включая Большую Туманность Ориона, и продемонстрировал, что спектры туманностей в видимом диапазоне сильно отличаются от спектров звезд. Излучение типичной звезды — непрерывный спектр, на который накладываются линии поглощения, рождающиеся в звездной атмосфере. А спектры туманностей, полученные Хеггинсом, состояли из нескольких эмиссионных линий, практически без непрерывного спектра. Это был спектр горячего разреженного газа, параметры которого совершенно не похожи на параметры газа в звездах. Основной вывод Хеггинса: получено наблюдательное подтверждение предположения Гершеля о том, что в космосе помимо звезд есть диффузное вещество, распределенное по значительным объемам пространства.

Чтобы собственное свечение межзвездного газа можно было наблюдать в оптическом диапазоне, он должен быть не только горячим, но и довольно плотным, а этим условиям отвечает далеко не все межзвездное вещество. В 1904 году Йоханнес Хартманн заметил, что более холодный и/или разреженный межзвездный газ выдает свое присутствие, оставляя в звездных спектрах собственные линии поглощения, которые рождаются не в атмосфере звезды, а вне ее, на пути от звезды к наблюдателю.

Исследование линий излучения и поглощения межзвездного газа позволило к 1930-м годам довольно хорошо изучить его химический состав и установить, что он состоит из тех же элементов, которые встречаются и на Земле. Несколько линий в спектрах долго не поддавались отождествлению, и Хеггинс предположил, что это новый химический элемент — небулий (от лат. nebula — облако), но он оказался всего лишь дважды ионизованным кислородом.

К началу 1930-х годов полагали, что все линии в спектре межзвездного газа выявлены и приписаны определенным атомам и ионам. Однако в 1934 году Пол Мерилл сообщил о четырех неидентифицированных линиях в желтой и красной областях спектра. Ранее наблюдавшиеся межзвездные линии имели очень малую ширину, как и положено атомарным линиям, образующимся в газе низкой плотности, а эти были шире и размытее. Практически сразу было высказано предположение, что это линии поглощения не атомов или ионов, а молекул. Но каких? Предлагались и экзотические молекулы, например натрия (Na2), и привычные двухатомные соединения, еще в XIX веке обнаруженные в кометных хвостах тем же Хеггинсом, например молекула CN. Окончательно существование межзвездных молекул было установлено в конце 1930-х годов, когда несколько неидентифицированных линий в синей области спектра удалось однозначно связать с соединениями CH, CH+ и CN.

Особенность химических реакций в межзвездной среде — доминирование двухчастичных процессов: стехиометрические коэффициенты всегда равны единице. Поначалу единственным путем к формированию молекул казались реакции «радиативной ассоциации»: чтобы два атома, столкнувшись, объединились в молекулу, необходимо отвести избыточную энергию. Если молекула, сформировавшись в возбужденном состоянии, успевает до распада излучить фотон и перейти в невозбужденное состояние, она сохраняет устойчивость. Расчеты, проведенные до 1950-х годов, показывали, что наблюдаемое содержание трех этих простых молекул вроде бы удается объяснить в предположении, что они формируются в реакциях радиативной ассоциации и разрушаются межзвездным полем излучения — совокупным полем излучения звезд Галактики.

Круг забот астрохимии в то время был не особенно широк, по крайней мере в межзвездной среде: три молекулы, с десяток реакций между ними и их составными элементами. Ситуация перестала быть спокойной в 1951 году, когда Дэвид Бэйтс и Лайман Спитцер пересчитали равновесные содержания молекул с учетом новых данных о скоростях реакций радиативной ассоциации. Оказалось, что атомы связываются в молекулы гораздо медленнее, чем считалось до этого, и потому простая модель промахивается в предсказании содержания CH и CH+ на порядки величины. Тогда они предположили, что две из этих молекул появляются не в результате синтеза из атомов, а в результате разрушения более сложных молекул, конкретно — метана. А откуда взялся метан? Ну, он мог образоваться в звездных атмосферах, а потом попасть в межзвездную среду в составе пылинок.

Позже космической пыли стали приписывать и более активную химическую роль, нежели роль простого переносчика молекул. Например, если для эффективного протекания химических реакций в межзвездной среде не хватает третьего тела, которое отводило бы избыток энергии, почему не предположить, что это пылинка? Атомы и молекулы могли бы вступать в реакции друг с другом на ее поверхности, а потом испаряться, пополняя собой межзвездный газ.

Свойства межзвездной среды

Когда в межзвездной среде были обнаружены первые молекулы, ни ее физические свойства, ни даже химический состав не были хорошо известны. Само обнаружение молекул CH и CH+ считалось в конце 1930-х годов важным доказательством наличия там углерода и водорода. Все изменилось в 1951 году, когда было обнаружено излучение межзвездного атомарного водорода, знаменитое излучение на длине волны около 21 см. Стало ясно, что именно водорода в межзвездной среде больше всего. По современным представлениям, межзвездное вещество — это водород, гелий и лишь 2% по массе более тяжелых элементов. Значительная часть этих тяжелых элементов, особенно металлов, находится в пылинках. Полная масса межзвездного вещества в диске нашей Галактики — несколько миллиардов масс Солнца, или 1–2% от полной массы диска. А масса пыли примерно в сто раз меньше массы газа.

Вещество распределено по межзвездному пространству неоднородно. Его можно разделить на три фазы: горячую, теплую и холодную. Горячая фаза — это очень разреженный корональный газ, ионизованный водород с температурой в миллионы кельвинов и плотностью порядка 0,001 см–3, занимающий примерно половину объема галактического диска. Теплая фаза, на долю которой приходится еще половина объема диска, имеет плотность около 0,1 см–3 и температуру 8000–10 000 К. Водород в ней может быть и ионизованным, и нейтральным. Холодная фаза действительно холодна, ее температура не более 100 K, а в самых плотных областях мороз до единиц кельвинов. Холодный нейтральный газ занимает всего около процента объема диска, но масса его составляет примерно половину всей массы межзвездного вещества. Это подразумевает значительную плотность, сотни частиц на кубический сантиметр и выше. Значительную по межзвездным понятиям, конечно, — для электронных приборов это замечательный вакуум, 10–14 торр!

Плотный холодный нейтральный газ имеет клочковатую облачную структуру, ту самую, что прослеживается по облакам межзвездной пыли. Логично предположить, что облака пыли и облака газа — это одни и те же облака, в которых пыль и газ перемешаны друг с другом. Однако наблюдения показали, что области пространства, в которых поглощающее действие пыли максимально, не совпадают с областями максимальной интенсивности излучения атомарного водорода. В 1955 году Барт Бок с соавторами предположили, что в наиболее плотных участках межзвездных облаков, тех самых, которые делаются непрозрачными в оптическом диапазоне из-за высокой концентрации пыли, водород находится не в атомарном, а в молекулярном состоянии.

Поскольку водород — основной компонент межзвездной среды, названия различных фаз отражают состояние именно водорода. Ионизованная среда — это среда, в которой ионизован водород, другие атомы могут сохранять нейтральность. Нейтральная среда — это среда, в которой водород нейтрален, хотя другие атомы могут быть ионизованы. Плотные компактные облака, предположительно состоящие в основном из молекулярного водорода, называются молекулярными облаками. Именно в них и начинается подлинная история межзвездной астрохимии.

Невидимые и видимые молекулы

Первые межзвездные молекулы были обнаружены благодаря своим линиям поглощения в оптическом диапазоне. Поначалу их набор был не слишком велик, и для их описания хватало простых моделей на основе реакций радиативной ассоциации и/или реакций на поверхностях пылинок. Однако еще в 1949 году И.С. Шкловский предсказал, что более удобен для наблюдения межзвездных молекул радиодиапазон, в нем можно наблюдать не только поглощение, но и излучение молекул. Чтобы увидеть линии поглощения, необходима фоновая звезда, излучение которой будут поглощать межзвездные молекулы. Но если вы смотрите на молекулярное облако, то фоновых звезд вы не увидите, потому что их излучение будет полностью поглощено пылью, входящей в состав того же самого облака! Если же молекулы излучают сами, вы увидите их везде, где они есть, а не только там, где их заботливо подсвечивают сзади.

Излучение молекул связано с наличием у них дополнительных степеней свободы. Молекула может вращаться, вибрировать, совершать более сложные движения, с каждым из которых связан набор энергетических уровней. Переходя с одного уровня на другой, молекула, так же, как и атом, поглощает и излучает фотоны. Энергетика этих движений невысока, поэтому они с легкостью возбуждаются даже при низких температурах в молекулярных облаках. Фотоны, соответствующие переходам между молекулярными энергетическими уровнями, попадают не в видимый диапазон, а в инфракрасный, субмиллиметровый, миллиметровый, сантиметровый... Поэтому исследования излучения молекул начались, когда у астрономов появились инструменты для наблюдений в длинноволновых диапазонах.

Правда, первая межзвездная молекула, обнаруженная по наблюдениям в радиодиапазоне, наблюдалась все-таки в поглощении: в 1963 году в радиоизлучении остатка сверхновой Кассиопея A. Это была линия поглощения гидроксила (OH) — длина волны 18 см, а вскорости гидроксил был обнаружен и в излучении. В 1968 году наблюдалась эмиссионная линия аммиака 1,25 см, через несколько месяцев нашли воду — линия 1,35 см. Очень важным открытием в исследованиях молекулярной межзвездной среды стало открытие в 1970 году излучения молекулы оксида углерода (CO) на длине волны 2,6 мм.

До этого времени молекулярные облака были в известной степени гипотетическими объектами. У самого распространенного химического соединения во Вселенной — молекулы водорода (H2) — нет переходов в длинноволновой области спектра. При низких температурах в молекулярной среде она просто не светится, то есть остается невидимой, несмотря на все свое высокое содержание. У молекулы H2 есть, правда, линии поглощения, но они попадают в ультрафиолетовый диапазон, в котором нельзя наблюдать с поверхности Земли; нужны телескопы, установленные либо на высотных ракетах, либо на космических аппаратах, что значительно усложняет наблюдения и еще значительнее удорожает их. Но даже при наличии заатмосферного инструмента линии поглощения молекулярного водорода можно наблюдать только при наличии фоновых звезд. Если учесть, что звезд или иных астрономических объектов, излучающих в ультрафиолетовом диапазоне, в принципе не так много и, кроме того, в этом диапазоне поглощение пыли достигает максимума, становится понятно, что возможности изучения молекулярного водорода по линиям поглощения весьма ограниченны.

Карта излучения молекулы CO в плоскости Млечного Пути, полученная в 2001 году Томасом Деймом и его соавторами. По осям отложены галактические координаты: долгота и широта. Галактическая долгота представляет собой угловое расстояние от направления на центр Галактики, а галактическая широта — угловое расстояние от плоскости Млечного Пути. (T.M. Dame, D. Hartmann, P. Thaddeus. <i>Astrophysical Journal</i>, 2001, 547, 792–713; DOI:10.1086/318388)
Карта излучения молекулы CO в плоскости Млечного Пути, полученная в 2001 году Томасом Деймом и его соавторами. По осям отложены галактические координаты: долгота и широта. Галактическая долгота представляет собой угловое расстояние от направления на центр Галактики, а галактическая широта — угловое расстояние от плоскости Млечного Пути. (T.M. Dame, D. Hartmann, P. Thaddeus. Astrophysical Journal, 2001, 547, 792–713; DOI:10.1086/318388)

Молекула CO стала спасением — в отличие, например, от аммиака, она начинает светиться при невысоких плотностях. Две ее линии, соответствующие переходам из основного вращательного состояния в первое возбужденное и из первого во второе возбужденное, попадают в миллиметровый диапазон (2,6 мм и 1,3 мм), все еще доступный для наблюдений с поверхности Земли. Более коротковолновое излучение поглощается земной атмосферой, более длинноволновое излучение дает изображения меньшей четкости (при заданном диаметре объектива угловое разрешение телескопа тем хуже, чем больше наблюдаемая длина волны). И молекул CO много, причем настолько много, что в этом виде находится, по-видимому, большая часть всего углерода в молекулярных облаках. Это означает, что содержание CO определяется не столько особенностями химической эволюции среды (в отличие от молекул CH и CH+), сколько попросту количеством доступных атомов C. И поэтому содержание CO в молекулярном газе можно считать, по крайней мере в первом приближении, постоянным.

Поэтому именно молекулу CO используют как индикатор наличия молекулярного газа. И если вам где-то встречается, например, карта распределения молекулярного газа в Галактике, это будет карта распределения именно оксида углерода, а не молекулярного водорода. Допустимость столь широкого применения CO в последнее время все чаще ставится под сомнение, но заменить его особенно нечем. Так что приходится компенсировать возможную неопределенность в интерпретации наблюдений CO осмотрительностью в ее проведении.

Новые подходы к астрохимии

В начале 1970-х годов количество известных межзвездных молекул стало измеряться десятками. И чем больше их открывалось, тем яснее становилось, что прежние химические модели, которые и содержание первой тройки CH, CH+ и CN объясняли не очень уверенно, с возросшим количеством молекул вовсе не работают. Новый взгляд (он принят и сейчас) на химическую эволюцию молекулярных облаков был предложен в 1973 году Вильямом Ватсоном и независимо Эриком Хербстом и Вильямом Клемперером.

Итак, мы имеем дело с очень холодной средой и очень богатым молекулярным составом: сегодня известно около полутора сотен молекул. Реакции радиативной ассоциации слишком медленны, чтобы обеспечить наблюдаемое содержание даже двухатомных молекул, не говоря уже о более сложных соединениях. Реакции на поверхностях пылинок более эффективны, но при 10 К молекула, синтезированная на поверхности пылинки, в большинстве случаев останется примороженной к ней.

 <i>Вверху слева</i> — глобула B68 в видимом диапазоне предстает в виде черного пятна. Это пыль, содержащаяся в глобуле, закрывает свет фоновых звезд. <i>Вверху справа</i> — карта той же глобулы в излучении иона N<sub>2</sub>H<sup>+</sup>.<br>\nОбласть излучения этого иона занимает только центральную часть глобулы. <i>Внизу слева</i>: излучение молекулы СО охватывает центр глобулы почти полным кольцом. <i>Внизу справа</i>: источником излучения в линии молекулы CS является лишь небольшой сгусток на окраине глобулы.<br>\nCh.J. Lada et al, <i>Asfrophysical Journal</i>, 2003,586,286–295, doi:10.1086/367610
Вверху слева — глобула B68 в видимом диапазоне предстает в виде черного пятна. Это пыль, содержащаяся в глобуле, закрывает свет фоновых звезд. Вверху справа — карта той же глобулы в излучении иона N2H+.
Область излучения этого иона занимает только центральную часть глобулы. Внизу слева: излучение молекулы СО охватывает центр глобулы почти полным кольцом. Внизу справа: источником излучения в линии молекулы CS является лишь небольшой сгусток на окраине глобулы.
Ch.J. Lada et al, Asfrophysical Journal, 2003,586,286–295, doi:10.1086/367610

Ватсон, Хербст и Клемперер предположили, что в формировании молекулярного состава холодных межзвездных облаков определяющую роль играют не реакции радиативной ассоциации, а ион-молекулярные реакции, то есть реакции между нейтральными и ионизованными компонентами. Их скорости не зависят от температуры, а в некоторых случаях при низких температурах даже возрастают.

Дело за малым: вещество облака нужно немного ионизовать. Излучение (свет близких к облаку звезд или совокупное излучение всех звезд Галактики) не столько ионизует, сколько диссоциирует. Кроме того, из-за пыли излучение не проникает внутрь молекулярных облаков, засвечивая лишь их периферию.

Но в Галактике есть другой ионизующий фактор — космические лучи: атомные ядра, разогнанные каким-то процессом до очень высокой скорости. Природа этого процесса до сих пор окончательно не раскрыта, хотя ускорение космических лучей (тех, что интересны с точки зрения астрохимии) происходит, скорее всего, в ударных волнах, сопровождающих вспышки сверхновых звезд. Космические лучи (как и все вещество Галактики) состоят главным образом из полностью ионизованных водорода и гелия, то есть из протонов и альфа-частиц.

Сталкиваясь с самой распространенной молекулой H2, частица ионизует ее, превращая в ион H2+. Он, в свою очередь, вступает в ион-молекулярную реакцию с другой молекулой H2, образуя ион H3+. И вот этот-то ион и становится главным двигателем всей последующей химии, вступая в ион-молекулярные реакции с кислородом, углеродом и азотом. Дальше все идет по общей схеме, которая для кислорода выглядит так:

O + H3+ → OH+ + H2
OH+ + H2 → H2O+ + H
H2O+ + H2 → H3O+ + H
H3O+ + e → H2O + H или H3O+ + e → OH + H2

Последняя реакция в этой цепочке — реакция диссоциативной рекомбинации иона гидроксония со свободным электроном — приводит к образованию молекулы, насыщенной водородом, в данном случае молекулы воды, или к образованию гидроксила. Естественно, диссоциативная рекомбинация может случиться и с промежуточными ионами. Конечный итог этой последовательности для основных тяжелых элементов — образование воды, метана и аммиака. Возможен другой вариант: частица ионизует атом примесного элемента (O, C, N), а этот ион реагирует с молекулой H2, опять же с образованием ионов OH+, CH+, NH+ (далее с теми же остановками). Цепочки разных элементов, естественно, развиваются не в изоляции: их промежуточные компоненты реагируют друг с другом, и в результате этого «перекрестного опыления» большая часть углерода переходит в молекулы CO, кислород, оставшийся не связанным в молекулах CO, — в молекулы воды и O2, а основным резервуаром азота становится молекула N2. Те же атомы, что не вошли в эти основные компоненты, становятся составными частями более сложных молекул, самая большая из которых, известная на сегодняшний день, состоит из 13 атомов.

В эту схему не вписываются несколько молекул, образование которых в газовой фазе оказалось крайне неэффективным. Например, в том же 1970 году кроме CO была в значительных количествах обнаружена существенно более сложная молекула — метанол. Долгое время синтез метанола считался результатом короткой цепочки: ион CH3+ реагировал с водой, образуя протонированный метанол CH3OH2+, а затем этот ион рекомбинировал с электроном, разделяясь на метанол и атом водорода. Однако эксперименты показали, что молекуле CH3OH2+ при рекомбинации проще разваливаться посередине, так что газофазный механизм образования метанола не работает.

Однако есть и более важный пример: в газовой фазе не образуется молекулярный водород! Схема с ион-молекулярными реакциями работает только при условии, что в среде уже есть молекулы H2. Но откуда они берутся? Существует три способа сформировать молекулярный водород в газовой фазе, но все они чрезвычайно медленны и в галактических молекулярных облаках работать не могут. Решение проблемы найдено в возвращении к одному из прежних механизмов, а именно к реакциям на поверхностях космических пылинок.

Как и прежде, пылинка в этом механизме играет роль третьего тела, предоставляя на своей поверхности условия для объединения атомов, которые не могут объединиться в газовой фазе. В холодной среде свободные атомы водорода примерзают к пылинкам, но из-за тепловых колебаний не сидят на одном месте, а диффундируют по их поверхности. Два атома водорода, встретившись в процессе этих блужданий, могут объединиться в молекулу H2, а энергия, выделяющаяся при реакции, отрывает молекулу от пылинки и переносит ее в газ.

Естественно, если атом водорода встретит на поверхности не своего собрата, а какой-то другой атом или молекулу, итог реакции также будет иным. Но есть ли на пыли другие компоненты? Есть, и на это указывают современные наблюдения наиболее плотных частей молекулярных облаков, так называемых ядер, которые (не исключено) в будущем превратятся в звезды, окруженные планетными системами. В ядрах происходит химическая дифференциация: из наиболее плотной части ядра исходит в основном излучение соединений азота (аммиака, иона N2H+), а соединения углерода (CO, CS, C2S) светятся в окружающей ядро оболочке, поэтому на картах радиоизлучения такие ядра выглядят как компактные пятна эмиссии соединений азота, окруженные колечками эмиссии оксида углерода.

Современное объяснение дифференциации таково: в наиболее плотной и холодной части молекулярного ядра соединения углерода, в первую очередь CO, примерзают к пылинкам, образуя на них ледяные оболочки-мантии. В газовой фазе они сохраняются только на периферии ядра, куда, возможно, проникает излучение звезд Галактики, частично испаряющее ледяные мантии. С соединениями азота ситуация иная: основная азотсодержащая молекула N2 к пыли примерзает не так быстро, как CO, и потому в газовой фазе даже самой холодной части ядра гораздо дольше остается достаточно азота, чтобы обеспечить наблюдаемое количество аммиака и иона N2H+.

В ледяных мантиях пылинок тоже идут химические реакции, главным образом связанные с добавлением атомов водорода к примерзшим молекулам. Например, последовательное присоединение атомов H к молекулам CO в ледяных оболочках пылинок приводит к синтезу метанола. Чуть более сложные реакции, в которых помимо водорода участвуют и другие компоненты, ведут к появлению и других многоатомных молекул. Когда в недрах ядра загорается молодая звезда, ее излучение испаряет мантии пылевых частиц, и продукты химического синтеза появляются в газовой фазе, где их также удается наблюдать.

Успехи и проблемы

Разумеется, помимо ион-молекулярных и поверхностных реакций в межзвездной среде происходят и другие процессы: и нейтраль-нейтральные реакции (в том числе реакции радиативной ассоциации), и фотореакции (ионизации и диссоциации), и процессы обмена компонентами между газовой фазой и пылинками. В современные астрохимические модели приходится включать сотни различных компонентов, связанных между собой тысячами реакций. Важно вот что: количество моделируемых компонентов существенно превышает то количество, что реально наблюдается, поскольку из одних только наблюдаемых молекул составить работающую модель не удается! Собственно говоря, так было с самого начала современной астрохимии: ион H3+, существование которого постулировалось в моделях Ватсона, Хербста и Клемперера, был обнаружен в наблюдениях только в середине 1990-х годов.

Все современные данные о химических реакциях в межзвездной и околозвездной среде собраны в специализированных базах данных, из которых наиболее популярны две: UDFA (UMIST Database for Astrochemistry) и KIDA (Kinetic Database for Astrochemistry).

Эти базы данных, по сути, представляют собой списки реакций с двумя реагентами, несколькими продуктами и численными параметрами (от одного до трех), позволяющими рассчитать скорость реакции в зависимости от температуры, поля излучения и потока космических лучей. Наборы реакций на поверхностях пылинок менее стандартизованы, однако и здесь есть два-три варианта, которые применяются в большинстве астрохимических исследований. Реакции, включенные в эти наборы, позволяют количественно объяснить результаты наблюдений молекулярного состава объектов разного возраста и при разных физических условиях.

Сегодня астрохимия развивается в четырех направлениях.

Во-первых, большое внимание привлекает к себе химия изотопомеров, в первую очередь химия соединений дейтерия. Помимо атомов H в межзвездной среде присутствуют также атомы D, в пропорции примерно 1:100 000, что сравнимо с содержанием прочих примесных атомов. Помимо молекул H2 на пылинках образуются также молекулы HD. В холодной среде реакция
H3+ + HD → H2D+ + H2
не уравновешивается обратным процессом. Ион H2D+ играет в химии роль, аналогичную роли иона H3+, и через него атомы дейтерия начинают распространяться по более сложным соединениям. Итог оказывается достаточно интересным: при общем отношении D/H порядка 10–5 отношение содержания некоторых дейтерированных молекул к содержанию недейтерированных аналогов (например, HDCO к H2CO, HDO к H2O) достигает процентов и даже десятков процентов. Аналогичное направление совершенствования моделей — учет различий в химии изотопов углерода и азота.

Во-вторых, одним из основных астрохимических направлений остаются реакции на поверхностях пылинок. Здесь большая работа проводится, например, по изучению особенностей реакций в зависимости от свойств поверхности пылинки и от ее температуры. До сих пор неясны детали испарения с пылинки синтезировавшихся на ней органических молекул.

В-третьих, химические модели постепенно проникают все глубже в исследования динамики межзвездной среды, в том числе в исследования процессов рождения звезд и планет. Это проникновение очень важно, поскольку оно позволяет напрямую соотносить численное описание движений вещества в межзвездной среде с наблюдениями молекулярных спектральных линий. Кроме того, эта задача имеет и астробиологическое приложение, связанное с возможностью попадания межзвездной органики на формирующиеся планеты.

В-четвертых, все больше становится наблюдательных данных о содержании различных молекул в других галактиках, в том числе и в галактиках на больших красных смещениях. Это означает, что мы уже не можем замыкаться в рамках Млечного Пути и должны разбираться с тем, как происходит химическая эволюция при ином элементном составе среды, при других характеристиках поля излучения, при других свойствах пылинок или какие химические реакции происходили в догалактической среде, когда весь набор элементов ограничивался водородом, гелием и литием.

При этом и рядом с нами остается немало загадок. Например, линии, найденные в 1934 году Мериллом, так до сих пор и не отождествлены. Да и происхождение первой найденной межзвездной молекулы — CH+ — остается пока неясным...


4
Показать комментарии (4)
Свернуть комментарии (4)

  • niki  | 06.11.2014 | 11:53 Ответить
    А что из себя представляют эти пылинки?
    Ответить
    • olegov > niki | 21.11.2014 | 11:05 Ответить
      Не изучал вопрос, но рискну предположить, что состав пылинок должен отвечать наибелее распространенному составу планет "каменного" типа. Какие-нибудь алюмосиликаты железа. Предположение строится на цепочке данных исходный газ это Н + Не без примеси, примеси от сверхновых и сброса оболочек красными гигантами. Соответственно состав конечного этапа синтеза в звезде как раз и корелирует с составом каменных планет, и аналогично с пылинками, которые в будущем послужат материалом для новой звезды и планет.
      Кстати соединения железа хорошие катализаторы. Вспомним хотя бы реакцию образования аммиака.
      Ответить
      • niki > olegov | 21.11.2014 | 12:55 Ответить
        Элементный состав вероятно. Действительно, откуда взяться как не со звезд. А вот устройство? Пыль это тоже что кометы или не то? Почему вообще считается что кометы первичный материал? Что известно об их происхождении?
        Ответить
        • olegov > niki | 24.11.2014 | 14:13 Ответить
          Ну т.е. понятно да не совсем, откуда взялась первичная пыль для охлаждения облаков и зарождения звезд если до этого звезд не было? Ну да не об этом речь. Тут нужно определится в терминах, пыль межзвездная, пыль межзвездная попавшая внутрь гелиосферы, пыль космическая возникшая/оставшаяся/преобразованная при формировании солнечной системы, пыль вторичная от столкновений объектов только солнечной системы, пыль вторичная от захваченных межзвездных объектов. Все это великолепие очевидно имеет разный состав и распределение по массе/размеру. И это только если анализировать пыль вне земной атмосферы. Если ловить пыль на земле или в пределах атмосферы добавляется влияние атмосферы, продукты распада крупных тел в атмосфере, выбросы от вулканов и индустриальные.
          Как я понимаю исследования такой пыли на земле ведутся достаточно давно, но учитывая характер той мешанины что там будет, и неизбежное взаимодействие с гелиосферой и атмосферой земли сделать надежные выводы о составе межзвездной пыли пока невозможно.
          Исследования пыли в космосе сейчас только идут, первая статья в Сайнс по анализу пыли, пойманной зондом Стардаст, вышла только в июле 2014 года. При этом зонд вылетал только на 2,2-2,5 млрд. км. от Солнца, в то время как граница гелиосферы 11-14 млр. км., и в ее пределах межзвездная пыль неминуемо взаимодействует с солнечным ветром и возможно объектами солнечной системы. Т.е. даже результаты этого проекта не ответят на 100% на вопрос о составе и характеристиках межзвездной пыли.
          Насчет комет не знаю, насколько помню они часто имеют происхождение вне солнечной системы, т.е. могут дать ответ "а как там у соседей". Думаю их состав и состав межзвездной пыли не обязан коррелировать.
          Ответить
Написать комментарий
Элементы

© 2005–2025 «Элементы»