Zoological Institute, Russian Academy of Science, Universitetskaya nab. 1,
St. Petersburg 199034, Russia
e-mail: model@zin.ru
A model of energy budget of Lake Bolshoi Okunenok ecosystem was based on the data received during field studies from May through November 1986. The model takes into account 36 components including dissolved organic matter, bacteria, phytoplankton, zooplankton, meiobenthos, macrobenthos, fish, suspended and sediment detritus. The growing season has been divided into 16 intervals according to the number of observations. The balance equation for each live component describes the change in its biomass for a time interval between two successive sampling dates. The change is considered as a balance of energy input with assimilation or feeding, and energy loss due to respiration, excretion, predation, natural mortality, fishery catchments or and emergence of imago insects. For non-live components we estimate an increase and a decrease in their mass due to the activity of living organisms, as well as organic matter exchange between water and sediments. Seasonal value of balance elements for each component are equal to sums of appropriate interval value. Comparison of energy flows through different links of a trophic web has shown that the role of a bacterial-detrital link was extremely important in Lake Bolshoi Okunenok for the growth season of 1986. Detritus constituted 58% of seasonal diet of non-predatory zooplankton, 39% of diet of predatory zooplankton, 50% of diet of planktivorous fish (fry of whitefish) and 92% of diet of benthivorous fish (fry of carp). The contribution of bacteria to the total seasonal decomposition amounted to 46%. Approximately 57% of the forage phytoplankton production, 86% of non-predatory benthos production, and 23-38% of the other trophic groups production were consumed by all grazers. 'Coefficient of energy transformation' is proposed. It is calculated as: CET(s, k)=Ps(k)/Pk where Ps(k) is production of consumers 's', built due to consumption of source 'k' Pk is production of source 'k' itself. In Lake Bolshoi Okunenok only 14% of energy built by phytoplankton were accumulated in organic matter of zooplankton due to direct consumption.