Элементы Элементы большой науки

Поставить закладку

Напишите нам

Карта сайта

Содержание
Энциклопедия
Новости науки
LHC
Картинка дня
Библиотека
Видеотека
Книжный клуб
Задачи
Масштабы: времена
Детские вопросы
Плакаты
Научный календарь
Наука и право
ЖОБ
Наука в Рунете

Поиск

Подпишитесь на «Элементы»



ВКонтакте
в Твиттере
в Фейсбуке
на Youtube
в Instagram



Библиотека

 
С. Петранек
«Как мы будем жить на Марсе». Глава из книги


М. Кронгауз
«Русский язык на грани нервного срыва. 3D». Главы из книги


Б. Штерн
Ближайшие пригодные для жизни экзопланеты: где они, как их можно наблюдать и как их достичь


Р. Фишман
Истории мутантов: гомеозисные гены


С. Мац
Искривленное зеркало


Л. Полищук
Почему вымерли мамонты и гибнут сайгаки: история о вкладах


В. Кузык
Нос на батарейках


Д. Мамонтов
Взглянуть инопланетянам в глаза


А. Бердников
Машинная точность


Р. Фишман
Великий уравнитель







Главная / Новости науки версия для печати

Кремнистые диатомовые водоросли синтезируют кальцитовые микрофибриллы


Одноклеточные водоросли <i>Didymosphenia geminata</i>

Одноклеточные водоросли Didymosphenia geminata — одни из немногих представителей диатомей, образующих колонии: длина стебельков в 5–10 раз превышает размер самой клетки, заключенной в кремнистый панцирь. Фото с сайта quebecpeche.com

Диатомовые водоросли Didymosphenia geminate образуют сплошные километровые заросли на донных субстратах в чистых реках и ручьях, создавая серьезную экологическую проблему. Экологи разобрались с вопросом, как эти водоросли закрепляются на камнях в условиях быстро текущей воды, инициируя начало колонии. В стебельках этих диатомовых помимо аморфного кремнезема присутствуют микрофибриллы кальцита. По своим размерным характеристикам они соответствуют порам кремнистого панциря. Поэтому логично предположить, что кальцитовые микрофибриллы берут начало именно от этих пор. Ученые предложили вероятный механизм их образования за счет работы комплекса карбоангидраз — класса ферментов, регулирующих реакцию растворения углекислого газа в воде.

Команда немецких, польских и российских ученых под руководством Германа Эрлиха (Hermann Ehrlich) из Института экспериментальной физики Фрайбергской горной академии (Германия) представила решение одной из современных экологических загадок — как одноклеточная диатомовая водоросль Didymosphenia geminata поселяется в речных стремнинах, закрепляясь на поверхности камней. Эта водоросль необычна во многих аспектах: во-первых, будучи одноклеточной, она способна образовывать колоссальные скопления, в которых клетки образуют ветвистые колонии; во-вторых, у нее имеется весьма длинный стебелек, с помощью которого она относительно высоко поднимается над субстратом, оставаясь тем не менее прикрепленной к нему; в-третьих, она выживает и даже процветает в олиготрофных водах с чрезвычайно низким содержанием органики и доступного фосфора. Все эти свойства обеспечивают ей надежное доминирование — она образует километровые ковры на каменистых и водорослевых грунтах, сильно сокращая пригодные площади обитания для рыб и беспозвоночных.

Попав не так давно в Новую Зеландию, Австралию, Чили — а изначально дидимо, как ее называют экологи, населяла только водоемы Северного полушария, — и размножившись изобильно в реках и ручьях северной Канады и Польши, она обернулась настоящим экологическим бедствием. Так что экологи всерьез занимаются ее изучением, в частности вопросами инициации роста колоний. Ведь если закрепится одна клетка, то она за счет быстрого деления вскоре даст начало новой колонии.

Исследователь-эколог М. Босуэл (Max Bothwell) демонстрирует заросли дидимо

Исследователь-эколог Макс Босуэлл (Max Bothwell) демонстрирует недавно появившиеся заросли дидимо на одном из ручьев бассейна оз. Верхнее (Канада). Фото с сайта duluthnewstribune.com

Как клетка может закрепиться на камне с помощью стебелька? Нужно заметить, что основная биомасса матов создается именно за счет стебельков и окружающего стебелек внеклеточного полисахаридного чехла. На ощупь эта биомасса скорее похожа на мокрую вату, чем на обычную водорослевую слизь. Как ни удивительно, но это ощущение имеет вполне определенную причину, и ее удалось прояснить, применив ряд минералогических и элементных анализов стебелька дидимо.

Известно, что клеточный скелет диатомовых имеет кремнеземную основу. Много аморфных соединений кремния обнаружилось и в самом стебельке, и это не удивительно с точки зрения налаженного силикатного клеточного хозяйства. Удивительно, что кроме кремния в стебельке обнаружился скелет из микрофибрилл кальцита. Эти микрофибриллы диаметром 170–200 нм протягиваются от пор клеточной створки вдоль стебелька до поверхности субстрата. Диаметр пор соответствует диаметру микрофибрилл.

Визуализация микрофибрилл стебелька

Визуализация микрофибрилл стебелька водоросли Didymosphenia geminate. Слева — фото сделано сканирующим микроскопом, на нем хорошо видны микрофибриллы в стебельке (длина масштабного отрезка 10 мкм). Сопряженный элементный состав этих микрофибрилл доказывает присутствие карбоната кальция. Справа — расположение микрофибрилл (видимых как прожилки) в стебельке диатомеи (покрашен цветом), закрепленной на субстрате; видно, что стебелек уходит глубоко в субстрат. Рисунки из обсуждаемой статьи в Advanced Functional Materials

Получается, что дидимо умеет управляться сразу с двумя видами неорганического материала — кремнеземом и кальцитом. Причем если с помощью первого строится собственно панцирь самой клетки, то второй отвечает за внешние взаимодействия. Он укрепляет стебелек, поднимая клетку над поверхностью субстрата, и даже образует микрокапилляры, по которым растворы от субстрата поднимаются к клеточному панцирю. Именно кальцит, внедряясь в микрополости субстрата, накрепко привязывает к нему клетку даже в условиях быстро текущей воды.

Ученые предположили, что кальцитовые микрофибриллы клетка создает в ходе клеточного дыхания за счет работы различных карбоангидраз (carbonic anhydrase). Наружные и внутренние карбоангидразы клеток регулируют обратимую реакцию растворения углекислого газа в воде. В ходе этой реакции в растворах оказываются в разных пропорциях протоны, карбонат-ионы и бикарбонат-ионы. Всё это существенно меняет кислотность среды вокруг клетки, при этом одни карбоангидразы сдвигают кислотность среды в щелочную сторону, уменьшая количество протонов, а другие — напротив, в кислую, увеличивая количество бикарбонат-ионов. За счет работы карбоангидраз — на первый взгляд, регулирующих ничтожно малые колебания условий среды вокруг микроскопических клеток — создаются, например, внушительные цианобактериальные строматолитовые постройки (см.: Е. В. Куприянова, Н. А. Пронина, 2011. «Карбоангидраза — фермент, преобразивший биосферу»; доступен английский вариант статьи Carbonic anhydrase: Enzyme that has transformed the biosphere).

В случае с дидимо срабатывают, по всей видимости, карбоангидразы, сконцентрированные в апикальной, обращенной к субстрату, стороне клетки. Там собрано максимальное количество митохондрий, вовлеченных в дыхание и энергетический обмен клетки. Именно на этом конце начинает расти стебелек. Карбоангидразы, выходящие через поры наружу, способствуют повышению кислотности среды, так что в микропространстве вокруг апикального порового поля субстрат растворяется. В результате в субстрате создаются микрополости и, кроме того, образуется избыток ионов Ca. Этот кальций немедленно вовлекается в процесс образования кальцитовых нанокристаллов, которые по мере роста клетки вытягиваются в микрофибриллы. Кристаллизация обеспечивается, возможно, другим классом карбоангидраз, которые увеличивают концентрацию бикарбонатов в непосредственной близости от самих пор.

Таким образом, одновременно прояснились сразу два вопроса — простой и сложный: почему дидимо похожа на вату и как клетки закрепляются в быстром течении. Открытый механизм закрепления стебельков дидимо может помочь выработать стратегию борьбы с ее нарастаниями. Но помимо экологических задач этот механизм интересен и с точки зрения создания композитных материалов. Если клетка водоросли может справляться одновременно с кремнеземом и кальцитом, то и высокоумные подражатели в белых халатах тоже смогут создать нечто подобное.

Источник: Hermann Ehrlich, Mykhailo Motylenko, Pallaoor V. Sundareshwar, Alexander Ereskovsky, Izabela Zgłobicka, Teresa Noga, Tomasz Płocinski, Mikhail V. Tsurkan, Elzbieta Wyroba, Szymon Suski, Henryk Bilski, Marcin Wysokowski, Hartmut Stöcker, Anna Makarova, Denis Vyalikh, Juliane Walter, Serguei L. Molodtsov, Vasilii V. Bazhenov, Iaroslav Petrenko, Enrico Langer, Andreas Richter, Elke Niederschlag, Marcin Pisarek, Armin Springer, Michael Gelinsky, David Rafaja, Andrzej Witkowski, Dirk C. Meyer, Teofil Jesionowski, and Krzysztof J. Kurzydłowski. Multiphase Biomineralization: Enigmatic Invasive Siliceous Diatoms Produce Crystalline Calcite // Advanced Functional Materials. 2016. DOI: 10.1002/adfm.201504891.

О композитных биоматериалах см. также:
Минеральные глаза моллюсков хитонов способны различать форму объекта, «Элементы», 23.11.2015.

Елена Наймарк


Комментарии (16)



Последние новости: МикробиологияЕлена Наймарк

6.07
Метанокисляющие микроорганизмы донных осадков оказались неожиданно разнообразными
5.07
Биоразнообразие стимулирует собственный рост
22.06
Рыбки-брызгуны хорошо различают человеческие лица
21.06
Кишечная бактерия влияет на социальное поведение мышей
15.06
Получение генов пектиназ от протеобактерий резко ускорило видообразование палочников
8.06
Новые древние остатки людей с острова Флорес говорят о родстве «хоббитов» с эректусами
1.06
Половой отбор сделал сперматозоиды дрозофил самыми длинными в мире
26.05
Очертания видового ареала определяются экологическими свойствами вида
18.05
Обнаружены одноклеточные организмы с ядром, но без митохондрий
13.05
Удалось проследить зарождение и развитие меланомы от первой раковой клетки

Научная картинка дня


Новости науки по темам: антропология, археология, астрономическая научная картинка дня, астрономия, биология, биотехнологии, генетика, геология, затмения, информационные технологии, космос, лингвистика, математика, медицина, нанотехнологии, наука в России, наука и общество, Нобелевские премии, палеонтология, Первое апреля, психология, технологии, физика, химия, эволюция, экология, энергетика, этология

Новости науки по авторам: Валентин Анаников, Дарья Баранова, Вера Башмакова, Александр Бердичевский, Максим Борисов, Варвара Веденина, Александр Венедюхин, Михаил Волович, Михаил Гарбузов, Алексей Гиляров, Дмитрий Гиляров, Сергей Глаголев, Евгений Гордеев, Николай Горностаев, Владимир Гриньков, Дмитрий Дагаев, Юрий Ерин, Анастасия Еськова, Дмитрий Жарков, Андрей Журавлёв, Дмитрий Замолодчиков, Игорь Иванов, Вячеслав Калинин, Павел Квартальнов, Мария Кирсанова, Дмитрий Кирюхин, Александр Козловский, Юлия Кондратенко, Артем Коржиманов, Ольга Кочина, Аркадий Курамшин, Виталий Кушниров, Иван Лаврёнов, Алексей Левин, Андрей Логинов, Сергей Лысенков, Лейла Мамирова, Александр Марков, Мария Медникова, Вадим Мокиевский, Григорий Молев, Тарас Молотилин, Антон Морковин, Марат Мусин, Максим Нагорных, Елена Наймарк, Алексей Опаев, Петр Петров, Александр Пиперски, Константин Попадьин, Сергей Попов, Роман Ракитов, Татьяна Романовская, Александр Самардак, Александр Сергеев, Андрей Сидоренко, Виктория Скобеева, Даниил Смирнов, Павел Смирнов, Дарья Спасская, Любовь Стрельникова, Алексей Тимошенко, Александр Токарев, Александр Храмов, Мария Шнырёва, Сергей Ястребов, Светлана Ястребова

Новости науки по месяцам: 2016 VIII, VII, VI, V, IV, III, II, I  2015 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2014 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2013 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2012 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2011 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2010 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2009 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2008 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2007 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2006 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2005 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I 

Новости науки почтой (рассылка на Subscribe.ru):

 


Где еще почитать научные новости: «Биомолекула», «Вокруг света», Газета.ру. Наука, «Наука и жизнь», Наука и технологии РФ, «Научная Россия», «Популярная механика», РИА Наука, «Чердак», N+1, Naked Science

 


при поддержке фонда Дмитрия Зимина - Династия