Элементы Элементы большой науки

Поставить закладку

Напишите нам

Карта сайта

Содержание
Энциклопедия
Новости науки
LHC
Картинка дня
Библиотека
Видеотека
Книжный клуб
Задачи
Масштабы: времена
Детские вопросы
Плакаты
Научный календарь
Наука и право
ЖОБ
Наука в Рунете

Поиск

Подпишитесь на «Элементы»



ВКонтакте
в Твиттере
в Фейсбуке
на Youtube
в Instagram



Библиотека

 
Т. Дамур
«Мир по Эйнштейну». Глава из книги


Л. Франк
«Мой неповторимый геном». Глава из книги


В. Винниченко
Почему дельфины никогда не спят?



В память о Леониде Вениаминовиче Келдыше (07.04.1931–11.11.2016)


Н. Жизан
«Квантовая случайность». Глава из книги


Интервью с С. Ландо
Сергей Ландо: «Прорывы в математике плохо предсказуемы»


В. Гаврилов
Загадка зарянки


А. Левин
Астрономия темного


В. Мацарский
Бодался Чандра с сэром Артуром


О. Макаров
Секрет разделения







Главная / Новости науки версия для печати

Белок глипикан-1 в экзосомах — перспективный маркер для ранней диагностики рака поджелудочной железы


Рис. 1. GPC1 позволяет отличить рак поджелудочной железы от доброкачественного заболевания

Рис. 1. GPC1 позволяет отличить рак поджелудочной железы от доброкачественного заболевания. Экзосомы, выделенные из крови больных раком поджелудочной железы или с ее предраковыми поражениями, несут встроенный в мембрану протеогликан GPC1. В то же время у пациентов с доброкачественными заболеваниями поджелудочной железы GPC1 не превышает нормальный уровень, свойственный здоровым донорам. Рисунок из синопсиса к обсуждаемой статье в Nature

Разработан неинвазивный метод диагностики рака поджелудочной железы , который позволяет с вероятностью практически 100% распознать заболевание на различных стадиях, включая предраковое состояние. Принцип метода состоит в обнаружении в крови экзосом (микрочастиц, которые продуцируются раковыми клетками), несущих белок глипикан-1. Сравнительная простота и эффективность нового метода, вероятно, позволит применить его для скрининга и диагностики рака поджелудочной железы в хорошо оборудованных клинических лабораториях.

Рак поджелудочной железы относится к наиболее агрессивным онкологическим заболеваниям человека. Главная проблема состоит в том, что нет надежных способов ранней диагностики этого рака, а симптомы проявляются тогда, когда ситуация уже становится фатальной. Методы, предложенные для диагностики, — как сравнительно простые и недорогие иммунологические, так и сложные и дорогие, такие как компьютерная и магнитно-резонансная томография, — либо не позволяют распознать рак на ранних стадиях болезни, либо дают много ложноположительных или ложноотрицательных результатов. Так, метод иммуноферментной детекции (см. Иммуноферментный анализ, ИФА, англ. enzyme-linked immunosorbent assay, ELISA) наиболее известного биомаркера этого рака — углеводного антигена СА19-9 — у многих больных раком не показывает превышения его нормального уровня. В то же время примерно половина испытуемых, не имеющих рака, демонстрирует повышенное содержание СА19-9. Томография обычно дает достоверный результат только тогда, когда опухоль уже достигла значительного размера.

В поисках надежных маркеров для диагностики рака поджелудочной железы авторы обратили внимание на глипикан-1 (GPC1) — сложный белок млекопитающих из класса протеогликанов (рис. 1). Наряду с другими пятью глипиканами GPC1 содержит гепаринсульфат. Было известно, что при раках поджелудочной железы и молочной железы экспрессия GPC1 усилена и он стимулирует размножение и метастазирование раковых клеток. То есть GPC1 является компонентом механизма контроля роста и деления клеток.

Поскольку иммунологическая детекция GPC1 в плазме крови как метод диагностики рака была ничем не лучше других, авторы исследовали GPC1 на экстраклеточных везикулах — частицах размером 50–150 нм, окруженных двухслойной липидной мембраной и несущих белки и нуклеиновые кислоты клетки. Такие частицы — экзосомы — секретируются в кровь различными клетками организма. Чтобы выявить GPC1, встроенный в липидную мембрану, циркулирующие в крови экзосомы (crExos) концентрировали из плазмы крови высокоскоростным центрифугированием, сорбировали на наночастицах, инкубировали с антителами к GPC1 и анализировали с помощью просвечивающей электронной микроскопии и проточной цитометрии.

CrExos были выделены из плазмы крови пациентов, больных раком молочной железы или раком протоков поджелудочной железы (PDAC), и, для сравнения, из плазмы здоровых доноров. Концентрация crExos у больных оказалась значительно выше, чем у здоровых. И если у последних доля crExos, положительных по GPC1, составляла 0,3–4,7% (в среднем 2,3%), то у больных раком молочной железы она оказалась выше контроля в 75% случаев, а при раке поджелудочной железы — у всех 190 исследованных пациентов (рис. 2). Таким образом, наблюдалась строгая корреляция между crExos, положительными по GPC1, и раком, особенно в случае PDAC.

Рис. 2. Циркулирующие экзосомы, несущие GPC1, как неинвазивный маркер для рака поджелудочной железы

Рис. 2. Циркулирующие экзосомы, несущие GPC1, как неинвазивный маркер для рака поджелудочной железы. По оси абсцисс — здоровые доноры (healthy), больные раком молочной железы (breast cancer) и больные раком поджелудочной железы (PDAC). По оси ординат — процент экзосом, несущих GPC1. Звездочки — степень достоверности различий (высокая). Рисунок из обсуждаемой статьи в Nature

Далее были исследованы crExos у больных с доброкачественными заболеваниями поджелудочной железы и с неоплазиями (новообразованиями), предшествующими раку. При доброкачественных заболеваниях доля GPC1-положительных crExos не превышала таковую в контролях. А в случаях предшественника рака — интраэпителиальной неоплазии протоков поджелудочной железы — она была заметно выше (рис. 3).

Рис. 3. Процент экзосом, несущих GPC1, у здоровых доноров (healthy donors), пациентов с доброкачественными заболеваниями (BPD) и с раком (PDAC) поджелудочной железы

Рис. 3. Процент экзосом, несущих GPC1, у здоровых доноров (healthy donors), пациентов с доброкачественными заболеваниями (BPD) и с раком (PDAC) поджелудочной железы. По оси ординат — процент экзосом, несущих GPC1. Звездочки — степень достоверности различий (4 – высокая, 1 — низкая). Рисунок из обсуждаемой статьи в Nature

У больных, которым была сделана хирургическая операция по удалению пораженных участков поджелудочной железы, уровень GPC1-положительных crExos коррелировал с наличием и размером опухоли и с продолжительностью их выживания.

Рис. 4. Схема взятия образцов крови для выделения экзосом

Рис. 4. Схема взятия образцов крови для выделения экзосом. РКТ — модельные мыши с развивающимся раком поджелудочной железы (7) и контрольные мыши (6). Красными черточками обозначено время взятия крови (недели). PanIN — предраковое состояние (интраэпителиальная неоплазия протоков поджелудочной железы), PDAC — развивающаяся раковая опухоль. Рисунок из обсуждаемой статьи) в Nature

Чтобы выяснить, насколько рано с помощью GPC1-положительных crExos можно определить развитие раковой опухоли, были проведены эксперименты на модельных мышах, воспроизводящих PDAC человека. На протяжении всего времени развития опухоли, включавшего и предраковое состояние — интраэпителиальную неоплазию протоков поджелудочной железы, — у мышей брали кровь и анализировали crExos (рис. 4).

Рис. 5. Циркулирующие экзосомы, несущие GPC1, позволяют предсказать рак поджелудочной железы у модельных мышей

Рис. 5. Циркулирующие экзосомы, несущие GPC1, позволяют предсказать рак поджелудочной железы у модельных мышей. По оси ординат — процент экзосом, несущих GPC1. По оси абсцисс — образцы крови контрольных (C) и экспериментальных мышей (E), взятые, как показано на рис. 3. Звездочки — степень достоверности различий (высокая). Рисунок из обсуждаемой статьи в Nature

Нарастание количества GPC1-позитивных crExos наблюдалось еще на предраковой стадии (рис. 5), гораздо раньше, чем растущую опухоль можно было распознать с помощью магнитно-резонансной томографии (рис. 6).

Рис. 6. Магнитно-резонансная томография развивающейся раковой опухоли поджелудочной железы у модельной мыши

Рис. 6. Магнитно-резонансная томография развивающейся раковой опухоли поджелудочной железы у модельной мыши. РКТ — модельная мышь, control — контроль. Границы опухоли обведены красной чертой. Рисунок из обсуждаемой в Nature

Таким образом, авторам удалось разработать неинвазивный метод диагностики, который позволяет распознать рак поджелудочной железы на различных стадиях, включая предраковое состояние. Диагностика с помощью анализа содержимого экзосом раков легких и поджелудочной железы совсем недавно и независимо от обсуждаемого исследования уже представлена другими авторами (R. Jakobsen et al., 2015. Exosomal proteins as potential diagnostic markers in advanced non-small cell lung carcinoma; B. Madhavan et al., 2015. Combined evaluation of a panel of protein and miRNA serum-exosome biomarkers for pancreatic cancer diagnosis increases sensitivity and specificity). Но в этих работах использовались методы анализа гораздо более сложные и дорогостоящие, чем в обсуждаемом исследовании, и вероятность обнаружения рака составляла 75% и 93% соответственно.

Важной инновацией обсуждаемой работы является нахождение высокоинформативного маркера GPC1 на циркулирующих в крови экзосомах. Дополнительные возможности для диагностики предоставляет показанное авторами во многих случаях присутствие в экзосомах мРНК мутантного гена KRAS, считающегося драйвером развития раковых опухолей. Насколько применим представленный подход для других форм и типов рака — еще предстоит установить. Так, для рака молочной железы авторам не удалось получить определенных результатов. Сравнительная простота разработанного метода позволит применить его для скрининга и диагностики рака поджелудочной железы, а потом, возможно, и других раков в хорошо оборудованных клинических лабораториях.

Источники:
1) Sonia A. Melo et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer // Nature. 2015. V. 523. P. 177–182.
2) Clotilde Théry. Cancer: Diagnosis by extracellular vesicles // Nature. 2015. V. 523. P. 161–162. (Популярный синопсис к обсуждаемой статье.)

Вячеслав Калинин


Комментировать



Последние новости: ОнкологияГенетикаМолекулярная биологияВячеслав Калинин

01.12
Иммунный статус макак зависит от социального
24.11
Метаморфоз у личинок червя Hydroides elegans запускается бактериями
23.11
Численность и генетическое разнообразие китовых акул измерили по пробам воды
14.11
Ген, работающий в мышцах и костях, у обезьян стал регулировать развитие мозга
09.11
Разнообразие пищевого поведения у нематоды Caenorhabditis elegans поддерживается балансирующим отбором
03.11
Змеи потеряли ноги из-за выключения гена Sonic hedgehog
01.11
Предки современных шимпанзе и бонобо неоднократно скрещивались друг с другом
27.10
Моллюски разных видов могут заражать друг друга раком
25.10
Секвенирование генома канального сома позволило найти гены, необходимые для формирования чешуи
20.10
Европейские зубры появились еще в плейстоцене

Научная картинка дня


Новости науки по темам: антропология, археология, астрономическая научная картинка дня, астрономия, биология, биотехнологии, генетика, геология, затмения, информационные технологии, космос, лингвистика, математика, медицина, нанотехнологии, наука в России, наука и общество, Нобелевские премии, палеонтология, Первое апреля, психология, технологии, физика, химия, эволюция, экология, энергетика, этология

Новости науки по авторам: Валентин Анаников, Дарья Баранова, Вера Башмакова, Александр Бердичевский, Максим Борисов, Варвара Веденина, Александр Венедюхин, Михаил Волович, Михаил Гарбузов, Алексей Гиляров, Дмитрий Гиляров, Сергей Глаголев, Евгений Гордеев, Николай Горностаев, Владимир Гриньков, Дмитрий Дагаев, Юрий Ерин, Анастасия Еськова, Дмитрий Жарков, Андрей Журавлёв, Дмитрий Замолодчиков, Игорь Иванов, Вячеслав Калинин, Павел Квартальнов, Мария Кирсанова, Дмитрий Кирюхин, Александр Козловский, Юлия Кондратенко, Артем Коржиманов, Ольга Кочина, Аркадий Курамшин, Виталий Кушниров, Иван Лаврёнов, Алексей Левин, Андрей Логинов, Сергей Лысенков, Лейла Мамирова, Александр Марков, Мария Медникова, Вадим Мокиевский, Григорий Молев, Тарас Молотилин, Антон Морковин, Марат Мусин, Максим Нагорных, Елена Наймарк, Алексей Опаев, Петр Петров, Александр Пиперски, Константин Попадьин, Сергей Попов, Роман Ракитов, Татьяна Романовская, Александр Самардак, Александр Сергеев, Андрей Сидоренко, Виктория Скобеева, Даниил Смирнов, Павел Смирнов, Дарья Спасская, Любовь Стрельникова, Дмитрий Сутормин, Алексей Тимошенко, Александр Токарев, Александр Храмов, Мария Шнырёва, Сергей Ястребов, Светлана Ястребова

Новости науки по месяцам: 2016 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2015 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2014 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2013 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2012 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2011 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2010 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2009 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2008 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2007 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2006 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2005 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I 

Новости науки почтой (рассылка на Subscribe.ru):

 


Где еще почитать научные новости: «Биомолекула», «Вокруг света», Газета.ру. Наука, «Индикатор», «Наука и жизнь», Наука и технологии РФ, «Научная Россия», «Популярная механика», РИА Наука, «Чердак», N+1, Naked Science

 


при поддержке фонда Дмитрия Зимина - Династия