Бактерии-симбионты заменили морскому червю органы пищеварения и выделения

Уникальный морской червь Olavius algarvensis, перепоручивший заботу о своем пропитании и удалении отходов бактериям-симбионтам (фото с сайта www.mpi-bremen.de)
Уникальный морской червь Olavius algarvensis, перепоручивший заботу о своем пропитании и удалении отходов бактериям-симбионтам (фото с сайта www.mpi-bremen.de)

Морской червь Olavius algarvensis не имеет ни пищеварительной, ни выделительной систем. Как выяснилось, под его наружными покровами обитают симбионты — бактерии четырех видов. Они не только обеспечивают червя и друг друга всем необходимым, но и утилизируют продукты жизнедеятельности червя, позволяя ему обходиться без выделительной системы. Уникальный сверхорганизм, образованный пятью видами живых существ, благодаря сложной системе биохимического сотрудничества может жить в условиях, где ни один из его компонентов не выжил бы в одиночку.

Когда-то симбиоз считался сравнительно редким явлением — скорее курьезом, чем правилом. Открытие симбиотической природы лишайников в 70-е годы XIX века донельзя удивило ученых (надо же, какие причуды бывают у матушки-природы!). С тех пор многое изменилось. Уже в начале XX века отдельные выдающиеся мыслители предполагали, что симбиоз и кооперация могут играть огромную роль в развитии жизни на Земле. Хотя «организмоцентрический» подход в биологии по-прежнему господствует, сегодня ученые ясно понимают, что по-настоящему «автономный организм», сформировавшийся и живущий без всякого участия каких-либо симбионтов, в природе еще надо поискать. Большинство живых существ, населяющих планету, в действительности являются «сверхорганизмами» — сложными симбиотическими комплексами.

Человек — не исключение. Каждая наша клетка получает необходимую ей энергию от митохондрий — потомков симбиотических бактерий. Многие из наших генов получены нами от вирусов, всевозможных «эгоистических» фрагментов ДНК и мобильных генетических элементов, таких как транспозоны (см. Древние млекопитающие заразились плацентой, «Элементы», 15.12.2005). Интроны — некодирующие вставки, присутствующие в большинстве наших генов и влияющие на их деятельность, тоже, скорее всего, являются потомками мобильных элементов, когда-то «прирученных» нашими предками. Наш метаболизм во многом определяется многочисленными микробами, составляющими кишечную флору. И даже если заглянуть внутрь любого из этих микробов, то и там мы найдем сожителей-симбионтов (плазмиды, фаги, транспозоны).

По мере развития симбиотических отношений симбионт может полностью утратить самостоятельность и превратиться в неотъемлемую часть своего хозяина (впрочем, надо признать, что и хозяин при этом теряет самостоятельность и перестает быть «автономным организмом»).

Очередной крупный прорыв в изучении природных симбиотических комплексов наметился в наши дни в связи с развитием метода «метагеномного анализа». Суть метода — в тотальном выделении из образца (например, из тканей какого-нибудь животного или из содержимого кишечника) всех молекул ДНК, какие попадутся. ДНК секвенируют (определяют последовательности нуклеотидов) и по этим последовательностям выясняют, какие твари присутствуют в пробе. Важное достоинство такого подхода в том, что он позволяет обнаружить и охарактеризовать микробов, не поддающихся культивированию в лаборатории (а таких среди микробов большинство). Генетические базы данных сегодня уже достаточно представительны, чтобы по набору выделенных из пробы генов можно было определить, какие организмы присутствуют в пробе, даже если эти организмы до сих пор не были известны науке. Сравнивая найденные гены с известными, можно выяснить не только чьими родственниками являются эти существа, но и как они живут и чем дышат.

«Элементы» уже писали о результатах метагеномного анализа содержимого человеческого кишечника (см. Кишечная микрофлора превращает человека в сверхорганизм, «Элементы», 9.06.2006). Еще более сенсационные результаты опубликовала на днях на сайте журнала Nature большая группа ученых из США и Германии, которым удалось при помощи метагеномного анализа обнаружить и «расшифровать», возможно, самую удивительную симбиотическую систему из всех известных на сегодняшний день.

Объектом изучения стал малощетинковый червь Olavius algarvensis, обитающий в Средиземном море. Червь этот интересен прежде всего тем, что у нет ни рта, ни кишечника, ни ануса, ни нефридиев — органов выделения. Некоторые другие морские черви тоже научились обходиться без органов пищеварения: например, у погонофор кишечник превратился в тяж, набитый симбиотическими бактериями, окисляющими сероводород или метан (см. Чтобы жить, глубоководные черви заражаются полезными бактериями, «Элементы», 23.05.2006). Поэтому можно было ожидать, что и у Olavius algarvensis отсутствие кишечника компенсируется наличием каких-то симбиотических микробов, обеспечивающих своего хозяина пищей в обмен на беззаботную жизнь в чужом теле. Однако редукция еще и выделительной системы — это явление беспрецедентное для кольчатых червей. Неужели микробы-симбионты сумели заменить червю не только органы пищеварения, но и органы выделения? Безусловно, этот случай заслуживал пристального изучения.

Метагеномный анализ выявил присутствие в теле червя четырех видов симбиотических бактерий, два из которых относятся к группе гамма-протеобактерий, а два другие — к дельта-протеобактериям. Обе гамма-протеобактерии, геном которых удалось ренконструировать почти полностью, являются автотрофами, то есть синтезируют органические вещества из углекислого газа. Необходимую для этого энергию они получают за счет окисления сульфида (S2–). В качестве окислителя используется кислород, а при отсутствии кислорода — нитраты (см. Если нет кислорода, можно дышать нитратами, «Элементы», 12.09.2006). Если же нет под рукой и нитратов, окислителем могут служить некоторые органические вещества. В качестве конечных продуктов жизнедеятельности эти бактерии выделяют окисленные соединения серы (например, сульфаты).

Дельта-протеобактерии тоже оказались автотрофами, но другого рода, а именно сульфат-редукторами. Они получают энергию, восстанавливая сульфат (или другие окисленные соединения серы) до сульфида. Таким образом, метаболизм гамма- и дельта-протеобактериальных симбионтов оказался взаимодополнительным: отходы первых служат пищей вторым, и наоборот.

В качестве восстановителя (донора электронов, необходимого для восстановления сульфата) симбиотические дельта-протеобактерии могут использовать молекулярный водород. В их геномах имеются гены ферментов — гидрогеназ, необходимых для работы с молекулярным водородом. Возможно (хотя и не удалось доказать наверняка), что гамма-протеобактериальные симбионты производят некоторое количество H2 в процессе своей жизнедеятельности и, таким образом, снабжают дельта-протеобактерий не только окисленными соединениями серы, но и восстановителем.

Бактериальные симбионты живут не в глубине тканей, а прямо под наружной оболочкой (кутикулой) червя. Здесь они ведут свою странную микробную жизнь, обмениваясь друг с другом продуктами своего метаболизма. Всё прочее, чего им может недоставать, они получают из окружающей среды — в основном это вещества, просачивающиеся из морской воды под кутикулу хозяина. Микробы размножаются, а эпителиальные клетки червя тем временем потихоньку заглатывают их и переваривают. Этого источника питания, очевидно, червю вполне достаточно, чтобы не испытывать дискомфорта из-за отсутствия рта и кишечника.

Но как удается червю обходиться без выделительной системы? Оказалось, что в геномах бактерий-симбионтов присутствуют гены белков, обеспечивающих всасывание и утилизацию мочевины, аммония и других «отходов жизнедеятельности» червя. Эти вещества служат бактериям ценными источниками азота.

Очевидно, что червь-хозяин полностью зависит от своих симбионтов и жить без них не в состоянии. А могут ли бактерии обходиться без червя? Судя по строению их геномов, это вполне вероятно. Геномы бактерий, полностью перешедших к паразитическому или симбиотическому образу жизни, обычно упрощаются. В частности, в них исчезают или выходят из строя гены, необходимые для синтеза некоторых веществ (например, аминокислот), которые можно позаимствовать у хозяина. Ничего подобного не наблюдается у симбионтов червя Olavius algarvensis.

Возможно, основная выгода, которую бактерии получают от сожительства с червем, состоит в том, что он подвижен и может по мере надобности переползать туда, где условия среды наиболее благоприятны для всей честной компании. В верхних слоях осадка, где имеется немного кислорода, но нет сульфидов, гамма-протеобактерии могут получать необходимые им сульфиды от своих сожителей — дельта-протеобактерий. Сульфид в этом случае будет окисляться кислородом — наиболее энергетическим выгодным окислителем. В больших количествах, правда, кислород вреден для сульфат-редукторов — дельта-протеобактерий.

Если червь закопается поглубже, он попадет в слои, где кислорода нет вовсе. Здесь гамма-протеобактерии будут использовать в качестве окислителя нитраты, что несколько менее выгодно, зато сульфида у них будет вдоволь, потому что кислород больше не будет угнетать жизнедеятельность дельта-протеобактерий.

Наконец, в еще более глубоких слоях осадка, где нет не только кислорода, но и нитратов, гамма-протеобактерии могут использовать в качестве окислителя некоторые органические вещества, в том числе триметиламин-N-оксид (выделяемый червем-хозяином) и фумарат (производимый дельта-протеобактериями). При этом в клетках одного из двух видов гамма-протеобактерий запасается сера (как продукт неполного окисления сульфида), которую можно доокислить позже, когда червь выползет повыше и станут доступны более сильные окислители. Сукцинат, выделяемый гамма-протеобактериями в ходе «фумаратного дыхания», охотно утилизируется дельтапротеобактериями, и так далее: исследователи выявили еще целый ряд возможных механизмов «биохимического сотрудничества» внутри этого удивительного симбиотического комплекса.

Таким образом, пять видов живых существ, объединившись, превратились в универсальный «сверхорганизм», способный жить в самых разнообразных условиях — в том числе и там, где ни один из его «компонентов» не выжил бы в одиночку.

Источник: Woyke et al. Symbiosis insights through metagenomic analysis of a microbial consortium // Nature. 17 September 2006. Advanced online publication (doi:10.1038/nature05192).

См. также:
Симбиоз и кооперативные процессы в эволюции.

Александр Марков


0
Написать комментарий


    Другие новости


    Элементы

    © 2005-2017 «Элементы»