Элементы Элементы большой науки

Главная / Библиотека / Из Книжного клуба

«Кто изобрел современную физику?». Глава из книги

Геннадий Горелик


Кто изобрел современную физику?

Геннадий Ефимович ГОРЕЛИК

Кто изобрел современную физику?

От маятника Галилея до квантовой гравитации


Эта книга рассказывает о возникновении новых понятий науки, начиная с изобретения современной физики в XVII веке и до нынешних стараний понять квантовую гравитацию и рождение Вселенной. Речь идет о поворотных моментах в жизни науки и о драматических судьбах ее героев, среди которых — Г. Галилей, И. Ньютон, Дж. Максвелл, М. Планк, А. Эйнштейн, Н. Бор, А. Фридман, Ж.. Леметр, М. Бронштейн, Л. Ландау, Г. Гамов, А. Сахаров и др.


Глава 8. Открытие Вселенной

Закон красного смещения

Эта история началась с замечательного открытия, сделанного в 1908 году Генриеттой Ливитт, которая тогда не была еще астрономом. Она смотрела не вверх, в звездное небо, а вниз — на фотопластинки, сделанные в Гарвардской обсерватории за много лет. В те времена женщин к телескопам еще не допускали даже в этой, самой свободной части Америки. Она работала в группе вычислительниц, измеряла положения и яркости звезд на фотопластинках разного времени. Занимаясь этим скучным делом, она зарегистрировала тысячи звезд в Магеллановом облаке — туманности, соседней с нашей Галактикой. При этом Ливитт заметила несколько звезд-цефеид, яркость которых менялась с постоянным периодом, зависящим от их яркости, и получила определенное соотношение между этими величинами.

Открытие это стало возможно, поскольку расстояние до Магелланова облака много больше его размеров, и, значит, все тамошние цефеиды находятся от наблюдателя примерно на одинаковом расстоянии, хоть и неизвестном тогда. Вскоре удалось измерить расстояние до одной цефеиды в нашей Галактике, после чего соотношение между яркостью и периодом цефеид стало абсолютно определенным. И теперь уже можно было, измеряя период и видимую яркость цефеиды, вычислить истинное расстояние до нее. Это дало способ определять расстояния до туманностей. Именно этим способом астроном Эдвин Хаббл, работавший в обсерватории в Калифорнии, установил к 1924 году, что большинство туманностей — далекие галактики, подобные нашей.

К тому времени подоспело совсем другое исследование туманностей-галактик. Его начал в 1912 году Весто Слайфер в обсерватории в Аризоне, определяя скорости небесных объектов по их спектрам. Скорость света не зависит от скорости его источника, но цвет зависит: каждая спектральная линия смещается в красную сторону, если источник удаляется, и в фиолетовую — если приближается. Смещение тем больше, чем больше скорость. Это явление, называемое эффектом Доплера, имеет тот же характер, что изменение звука гудка поезда или машины с сиреной, когда они проносятся мимо. К 1923 году в результате очень трудоемких исследований спектров галактик Слайфер измерил скорости 41 галактики, из которых, как оказалось, 36 удаляются. Наблюдения явно намекали на что-то.

Этот намек воспринял уже известный нам Эдвин Хаббл, и, похоже, его восприимчивость усилилась в результате участия в 1928 году в конгрессе Международного астрономического союза в Голландии. Вернувшись с конгресса, Хаббл к данным Слайфера добавил еще несколько измерений и в 1929 году опубликовал статью, в которой представил новый закон — закон красного смещения. Данные о скоростях и расстояниях галактик дали примерно такую картину:

Пунктирная прямая означает, что скорости удаления галактик пропорциональны их удаленностям

V = H·D

и что на расстоянии 1 мегапарсек (≈ 3·1019 км) галактики разлетаются со скоростью примерно 500 км/сек.

Иными словами, Вселенная расширяется, как и предсказывало решение Фридмана. Разделив расстояние 1 мегапарсек на скорость 500 км/сек, получим, что расширяется уже примерно два миллиарда лет. А что было в начале расширения два миллиарда лет назад? Расстояний между галактиками никаких не было, было некое сплошное единое целое. А если принять решение Фридмана полностью, то единое целое Вселенной возникло в некий момент в виде точки с бесконечной плотностью вещества.

Так это выглядит сейчас. Однако к началу 30-х годов картина была иной. Хаббл вскоре после публикации своей статьи разуверился в том, что закон красного смещения говорит о расширении Вселенной. Хоть он и откладывал на своем графике «скорость», впоследствии, до конца жизни, он считал это лишь условным обозначением спектрального сдвига, «как будто» этот сдвиг — результат эффекта Доплера. Измеряли-то именно спектральный сдвиг, а какая физика его определяла — вопрос открытый, считал он.

Причиной такого скептицизма было то, что возраст Вселенной в два миллиарда лет слишком мал для астрономов. Некоторые звезды старше, и даже Земля, согласно хронологии, основанной на изучении радиоактивных изотопов, оказывалась старше Вселенной, что абсурдно. Вслед за статьей Хаббла его коллега Фред Цвикки предложил другое объяснение: фотоны от далеких галактик краснеют не потому, что галактики удаляются, а потому, что за миллионы лет своего путешествия фотоны от далеких галактик теряют часть своей энергии в силу какого-то взаимодействия с межгалактической средой, как говорили тогда, фотоны «стареют» или «устают». Чем дольше путешествуют, тем больше теряют, а значит, согласно квантовому соотношению E = hν, частота фотонов уменьшается, то есть они краснеют.

В 1931 году Хаббл писал де Ситтеру:

Мы глубоко тронуты Вашей любезной оценкой наших работ о скоростях и расстояниях туманностей. Мы говорим о «видимых» скоростях, чтобы подчеркнуть эмпирический характер этой связи. Интерпретацию, мы думаем, следует оставить Вам и тем очень немногим, кто компетентны обсуждать этот вопрос.

Осторожный астроном-наблюдатель пишет «туманности» вместо «галактики», хотя именно благодаря ему галактики утвердились в астрономии. Но его осторожное отношение к космологии более резонно.

Математический аппарат эйнштейновской теории гравитации настолько отличался от обычного аппарата астрофизики, что лишь немногие освоили его по-настоящему, тем более что применялся этот аппарат в считанных задачах. Да и сама возможность начала Вселенной шокировала и отбивала охоту у зрелых астрофизиков расширять свои математические знания.

Видный британский астрофизик Эдвард Милн, например, чтобы не переучиваться, придумал в 1932 году замену релятивистской космологии: шарообразное скопление галактик разлеталось в окружающую пустоту по законам Ньютоновой физики. Так он получил формулу разлета, сопоставимую с законом красного смещения, но, как быть с перигелием Меркурия и с отклонением света, «теория» Милна не знала и знать не желала. Зато не было проблемы «сотворения мира» из точки. Что случилось в начале разлета, было неясно, но пространству и времени ничего не угрожало.

Сопоставлять наблюдения с кустарными формулами Милна наравне с уравнениями Эйнштейна не могли астрофизики, широко смотрящие на мир. Двое из них были особенно компетентны обсуждать закон красного смещения.

Жорж Леметр, астрофизик в сутане

Жорж Леметр

Жорж Леметр

Этот бельгийский астрофизик, прежде чем заняться наукой, стал католическим священником, всегда ходил в сутане, а свои статьи подписывал «аббат Ж. Леметр». Легко представить себе, какие мысли возникали у его коллег при первом знакомстве. Но даже и после знакомства нелегко было признать, что в его научных текстах все доводы подчинены обычной научной логике. Проще было его смелые идеи связать с сутаной, чем в них вдуматься.

Загадкой истории остается то, что закон красного смещения, называемый соотношением Хаббла, Леметр открыл за два года до Хаббла — в 1927 году. И лишь затем узнал, что динамическую космологию, с которой он связал наблюдаемый разлет галактик, открыл Фридман еще в 1922-м.

Определился с профессией Леметр позже обычного, поскольку в его юношеские планы вторглась мировая война. Он изучал инженерные науки в Католическом университете, когда его мобилизовали в армию. Служил в артиллерии, за боевые заслуги был награжден орденом. После войны изучал математику, физику, астрономию и... готовился к рукоположению. Приняв сан священника, в 1923 году поехал в Англию изучать астрофизику под руководством Эддингтона, а затем в США — в ту самую Гарвардскую обсерваторию, где открытием ритма цефеид начался выход за пределы нашей Галактики. Со знанием первых плодов внегалактической астрономии вернулся в Бельгию и стал профессором в родном университете.

В 1927 году Леметр опубликовал свою ныне самую знаменитую, а тогда совершенно не замеченную статью. Опубликовал он ее на французском языке в неведомом бельгийском журнале — Бельгия отнюдь не была великой научной державой, а главными языками тогдашней астрофизики были английский и немецкий.

«Однородная Вселенная с постоянной массой и увеличивающимся радиусом объясняет радиальную скорость внегалактических туманностей» — длинноватое название статьи говорит и об астрономическом поводе, и о главном результате. Автор использовал статью Хаббла 1926 года о расстояниях до «внегалактических туманностей», то бишь других галактик, и статью коллеги Хаббла по обсерватории — о скоростях галактик. Заметив связь этих величин, Леметр оценил коэффициент разлета галактик (ныне называемый коэффициентом Хаббла) и получил около 600 км/сек·Мпк — величина того же порядка, что у Хаббла два года спустя. При этом Леметр теоретически объяснил удивительный астрономический факт на основе нового, как он думал, решения уравнений Эйнштейна.

Опубликовав работу в малоизвестном журнале, Леметр тем не менее старался донести ее до первых лиц в тогдашней астрофизике. Он послал статью Эддингтону, но тот ее не прочитал (или не понял). Когда в 1927 году в Бельгию приехал Эйнштейн, Леметр встретился с ним и рассказал о своей работе. Эйнштейн указал ему на работу Фридмана, но, хоть и не имел математических доводов против, отвергнул физическую реальность расширяющейся Вселенной. По свидетельству Леметра, Эйнштейн ему сказал: «Математика у вас правильна, но физика отталкивающая».

Наконец, в 1928 году, Леметр отправился в соседнюю Голландию на конгресс Международного астрономического союза, встретился с его президентом де Ситтером, «космологом № 2», и попытался рассказать ему о своей работе. Увы, то ли президент был слишком занят конгрессом, то ли подобно Эйнштейну не допускал новую возможность, то ли в силу первого и второго просто не понял молодого теоретика-священника, говорящего о разбегании галактик.

На этот конгресс приехал из Америки и Хаббл. Нет свидетельств о его контакте с Леметром, но идея связать расстояния и скорости галактик слишком проста, чтобы исключить возможность какой-то неявной, опосредованной подсказки. Впрочем, простота идеи делает вполне вероятной и независимость двух открытий. Вскоре после возвращения с конгресса Хаббл опубликовал свою знаменитую статью. Так или иначе, роль Хаббла в открытии основного факта космологии несомненна — его измерения внегалактических расстояний, как и измерения скоростей Слайфером, были отправным пунктом для Леметра.

Именно астрономический авторитет Хаббла утвердил закон красного смещения как реально наблюдаемый факт. На обсуждении этого факта в Англии при участии Эддингтона и де Ситтера был признан теоретический тупик. Узнав об этом, Леметр вновь послал Эддингтону свою статью 1927 года. Тот наконец понял, организовал публикацию английского перевода статьи в главном астрономическом журнале и в своем комментарии назвал ее «блестящим решением» космологической проблемы.

В английском переводе, правда, удалены абзацы, в которых Леметр «преждевременно» открыл закон красного смещения, то есть соотношение Хаббла. Люди, склонные к интригам, усматривают в этом какие-то тайные мотивы Эддингтона и нездоровые амбиции Хаббла. Такое подозрение, однако, не вяжется с тем, как Эддингтон превозносил Леметра, который к тому же сам одобрил сокращенный перевод своей статьи. Более простое объяснение состоит в том, что Эддингтон и Леметр хотели донести до коллег новое космологическое решение, а не затеять приоритетный спор по поводу уже признанного астрономического открытия — признанного благодаря авторитету Хаббла в астрономии.

Решение Леметра, подкрепленное соотношением Хаббла — Леметра, признали теперь также де Ситтер и Эйнштейн. Признали, собственно, то, что эйнштейновская теория гравитации может описать разлет галактик как расширение самого пространства-времени.

Почему же выдающиеся теоретики так долго не принимали простое следствие теории, которую все они признавали истинной? Почему Эйнштейн, еще в 1923 году признавший результаты Фридмана «правильными и проливающими новый свет», не находил им места в своей картине мира вплоть до публикации Хаббла 1929 года?

Потому что даже теоретическая физика — наука экспериментальная, и в ней факты природы бывают весомей задушевных идей. И потому что физическое понятие Вселенной оказалось гораздо глубже представления обо «всем видимом мире».

Космологии повезло, что сперва Эйнштейн нашел одно-единственное космологическое решение — одно решение для единственной Вселенной. Второе решение де Ситтера легко было забраковать, поскольку в нем не было никакого вещества, сплошная пустота. Но Фридман предложил выбор из бесконечного семейства космологических решений, каждое отвечало набору из трех величин: величина космологической постоянной, плотность вещества и скорость расширения в некий момент времени. Возможные типы космологических сценариев очень различались: вечное расширение, начинающееся с нулевого или конечного радиуса; расширение, переходящее в сжатие; сжатие до нуля или до конечного значения радиуса. Что делать с этим трижды бесконечным разнообразием космологий, было непонятно. При отсутствии наблюдаемых ориентиров действовала лишь личная интуиция, и она сказала Эйнштейну «нет», возможно, еще и потому, что Фридман из всего многообразия космологий выделил ту, которая начиналась с нулевого радиуса — «от сотворения мира».

Леметр нашел наблюдаемый ориентир — разлет галактик, и решение он выбрал не столь вызывающее: расширение начиналось с конечного радиуса в бесконечно удаленном прошлом. Кроме того, Фридман предполагал «начинку» Вселенной в виде пыли или идеального газа, где отдельные пылинки-молекулы-звезды (галактики) не замечают остальных. А Леметр принял более физическое описание «начинки», добавив к ней излучение.

Опираясь на работу Леметра, Эддингтон указал на неустойчивость первой космологической модели Эйнштейна. Чисто теоретически — математически — идеально симметричный карандаш может стоять вертикально на острие грифеля, но малейшее отклонение ведет к падению. Так же и статичная Вселенная Эйнштейна при малейшем возмущении начнет «падать», расширяясь, сжимаясь либо деформируясь как-то иначе. В сценарии Леметра модель Эйнштейна была «начальным» состоянием в бесконечно удаленном прошлом.

Сам Леметр, не довольствуясь астроматематикой, думал о физическом смысле начала расширения. В 1931 году он выдвинул идею «первичного атома», понимая атом в древнегреческом смысле, как нечто целое, о частях чего не имеет смысла говорить, а фактически имея в виду гигантское «первичное ядро», аналогичное атомному ядру — тогда главной загадке физики. Он глазами физика всматривался в то состояние Вселенной в прошлом, когда ее вещество, еще не разделенное на галактики, представляло собой нечто сплошное и ядерное. В физике ядра тогда мало что было ясно, кроме свойств радиоактивного распада, с чего и начался путь к открытию ядра. Леметр предположил, что нечто, подобное радиоактивному распаду ядер, стало началом расширения Вселенной — распад первичного ядра. То была лишь общая идея, но идея физическая и связанная с насущной тогда проблемой — с поиском теории ядра. Единственный подкрепляющий довод Леметр нашел в незадолго до того открытых космических лучах, в которых заподозрил осколки «первичного взрыва».

Однако представление о каком-то резком начале, о рождении Вселенной было совершенно неприемлемо для Эддингтона и, судя по молчанию, для Эйнштейна. Лишь спустя несколько десятилетий оно вошло в космологию и стало чуть ли не самоочевидным следствием расширения Вселенной. Тогда уже знали, что космические лучи рождаются в разнообразных астрофизических процессах, включая процессы на Солнце, и лишь в 1965 году обнаружились подлинные осколки «первичного взрыва» — реликтовое излучение.

Что же мешало Эйнштейну оценить новую фундаментальную идею уже при ее появлении в начале 1930-х? Да, идея эта не рождала ясных надежд на экспериментальное подкрепление. Но Эйнштейн тогда уже десять лет — во все большем одиночестве — занимался не менее теоретическими идеями в поисках так называемой «единой теории поля». Приходится вспомнить о грустном законе Планка, согласно которому новые фундаментальные идеи требуют открытости молодого ума. Эйнштейну было уже за 50.

Кроме того, размышляя об идее Леметра, вводящей в физику «начало Вселенной», трудно избежать другого грустного вывода, что на оценку идеи влияла «одежка» астрофизика-священника. Не только Фридман видел параллель с библейским сотворением мира. Легко было заподозрить Леметра в тайном — быть может, даже для него самого — желании подкрепить религию наукой. Это тем более грустно, что сам Леметр подобную связь отвергал по принципиальным религиозным основаниям. Как человек науки, он прекрасно понимал отличие объективного знания об устройстве природы от глубоко личной религиозной веры и это свое понимание счел нужным высказать в чисто научной аудитории:

По моему мнению, теория первичного атома находится вне всяких метафизических или религиозных вопросов. Материалисту она оставляет свободу отрицать всякое сверхъестественное существо. Верующему она не дает возможности ближе познакомиться с Богом. Она созвучна словам Исайи, говорившего о «скрытом Боге», скрытом даже в начале творения. Наука вовсе не должна тушеваться перед лицом Вселенной, и когда Паскаль пытается вывести существование Бога из предположенной бесконечности Природы, мы можем думать, что он смотрит в неправильном направлении. Для силы разума нет естественного предела. Вселенная не составляет исключения, — она не выходит за пределы способности понимания.
Приведенные слова Леметр произнес за два года до того, как стал президентом Папской академии наук (1960). Однако, несмотря на такой почет, идея «первичного атома» была экзотикой для большинства астрофизиков до 1965 года, когда экспериментаторы — случайно — обнаружили космическое фоновое излучение, в котором теоретики опознали наследие «первичного взрыва».