Несса Кэри

«Мусорная ДНК». Глава из книги

Глава 5. Мы стареем, и у нас все съеживается

Фильм «Поменяться местами» (1983) с Дэном Эйкройдом, Эдди Мёрфи и Джейми Ли Кёртис в год своего выхода наделал много шума, собрав в американском прокате больше 90 миллионов долларов1. Это комедия с хитро закрученной интригой. В основе сюжета лежит, в сущности, исследование того, как на человека влияют его гены, а как — среда, в которой он находится. Почему человек добивается успеха — благодаря врожденным талантам или же из-за особенностей среды, в которую помещен? Создатели фильма явно склоняются ко второму варианту ответа.

Что-то похожее происходит и в наших геномах. Отдельный ген может играть сравнительно невинную роль. Благодаря ему определенный белок будет вырабатываться со строго определенной скоростью. И одним из важнейших факторов, контролирующих количество синтезируемого белка, является положение гена в хромосоме.

А теперь представим себе, что этот ген перенесли в новое окружение — подобно тому, как герой Дэна Эйкройда оказывается в трущобах, а персонаж Эдди Мёрфи — в богатом особняке. В новой среде наш перемещенный ген окружен новой для него геномной информацией, которая призывает его вырабатывать гораздо более высокие дозы белка. А повышенное содержание белка, в свою очередь, побуждает клетку расти и делиться быстрее, чем обычно. Это может стать началом развития рака. В самом гене ничего плохого нет, он просто в неподходящее время очутился в неподходящем месте.

Причина этого процесса — одновременный разрыв двух хромосом в одной клетке. Когда хромосома разрывается, клеточная «ремонтная аппаратура» тут же находит место разрыва и снова сшивает два куска. Обычно такой ремонт протекает довольно гладко. Но если в одно и то же время разорвутся две хромосомы (или больше), могут возникнуть проблемы. Концы хромосом могут оказаться связанными не так, как нужно (см. рис. 5.1). В результате хороший ген может оказаться в дурном обществе и стать причиной неполадок. Особенно это важно из-за того, что перекроенные таким путем хромосомы передаются всем последующим поколениям этой клетки. Возможно, самый известный пример здесь — разновидность рака крови человека, именуемая лимфомой Бёркитта. Реаранжировка здесь происходит между восьмой и четырнадцатой хромосомой. Это приводит к очень сильной сверхэкспрессии гена2, что побуждает клетку размножаться самым агрессивным образом3.

Рис. 5.1. Вверху: одиночная хромосома претерпевает разрыв. Клеточная аппаратура чинит ее. Внизу: две хромосомы разрываются одновременно. Клеточная аппаратура может не суметь разобраться, какой хромосоме принадлежат куски. Хромосомы могут оказаться сшитыми неправильно. Так возникают гибридные хромосомные структуры.

К счастью, разрыв двух хромосом, судя по всему, довольно редко происходит одновременно. Чаще они разрываются с некоторым интервалом во времени. Поэтому клеточная аппаратура для ремонта ДНК научилась в процессе эволюции действовать весьма стремительно. В конце концов, чем быстрее она справится с разрывом, тем ниже вероятность, что в клетке одновременно будут иметь место два разрыва (или больше). Аппаратура для ремонта ДНК приходит в действие, как только клетка обнаруживает, что в ней имеется оторванный кусок ДНК. У клетки есть специальные механизмы, позволяющие ей обнаружить конец такого куска — место разрыва.

Но это порождает целый ряд новых проблем. Наша клетка содержит 46 хромосом, и все они линейны. Иными словами, в каждой нашей клетке всегда есть 92 конца хромосом (ибо у хромосомы два конца). Ремонтная аппаратура должна уметь как-то отличать совершенно нормальные концы хромосом от аномальных, появившихся в результате разрывов.

Шнурки ДНК

Для этого клетки обзавелись особыми структурами на нормальных концах хромосом. Вы носите обувь на шнуровке? Если да, то взгляните-ка на свои шнурки. На каждом конце у них небольшой колпачок из металла или пластмассы — наконечник, который мешает шнурку расплестись и растрепаться. У наших хромосом тоже есть наконечники. Эти штуковины чрезвычайно важны для поддержания целостности генома.

Хромосомные наконечники называются теломерами. Они построены из одной формы мусорной ДНК, много лет известной ученым, и комплексов различных белков. Теломерная ДНК составлена из многократных повторов одной и той же последовательности 6 пар нуклеотидов — ТТАГГГ4. На концах у каждой хромосомы, содержащейся в пуповинной крови новорожденного, имеется в среднем примерно по 10 тысяч таких нуклеотидных пар5.

Теломерная ДНК помещена в своего рода каркас из белковых комплексов, помогающих ей поддерживать структурную целостность. Термин «теломера» относится как раз к этой комбинации определенной мусорной ДНК и связанных с ней белков. Еще в 2007 году важность этих белков убедительно продемонстрировали исследователи, ставившие опыты на мышах. Они подавили экспрессию одного из таких белков, полностью деактивировав соответствующий ген, и обнаружили, что получавшиеся при этом мышиные эмбрионы гибнут уже на ранних стадиях развития6.

Исследуя хромосомы таких генетически модифицированных мышей, ученые обнаружили, что многие хромосомы оказались сшитыми друг с другом. Иными словами, они соединились концами. Дело в том, что клеточная аппаратура для ремонта ДНК утратила способность опознавать теломеры. Она сочла, что имеет дело с кучей разорванных хромосом, и выполнила работу, которую выполняет лучше всего, то есть просто сшила их. К сожалению, при этом экспрессия генов пришла в полный хаос. В конце концов функционирование хромосом и самих клеток настолько сильно нарушилось, что это привело к одной из разновидностей клеточного самоубийства7, полностью остановив развитие организма.

Еще одно свойство теломер представляет большой интерес с точки зрения биологии и человеческого здоровья. Еще в 1960-е годы специалисты изучали, как клетки делятся в лабораторных условиях. Ученые не работали с линиями раковых клеток, поскольку те происходят от клеток, которые стали бессмертными из-за аномальных изменений. Вместо этого они изучали фибробласты — одну из разновидностей клеток, имеющуюся в целом ряде тканей человеческого организма. Фибробласты вырабатывают так называемый внеклеточный матрикс — что-то вроде толстых пастообразных обоев, которые удерживают клетки на месте. Довольно легко сделать биопсию (скажем, кожи) и выделить фибробласты. Они будут расти и делиться, образуя культуру клеток. Таким путем ученые еще довольно давно установили, что клетки в общем-то не могут делиться вечно. Рано или поздно наступает момент, когда они прекращают деление, даже если их по-прежнему снабжают всеми необходимыми питательными веществами и кислородом. Клетки не умирают, они просто перестают размножаться. Это так называемое клеточное старение8.

Позже ученые выяснили, что теломеры укорачиваются с каждым делением клетки. Всякий раз, когда одна из клеток делится, ДНК, содержащаяся в ней, копируется. Благодаря этому обе дочерние клетки наследуют 46 хромосом материнской клетки. Однако система, копирующая ДНК в хромосомах, не может добраться до самых их концов. Поэтому новые и новые циклы клеточного деления приводят к тому, что теломеры становятся всё короче и короче9.

Впрочем, это не доказывало, что укорачивание теломер — действительно причина старения клеток. Нельзя было исключить, что подобное воздействие на длину теломер служит своего рода маркером, регулирующим процесс размножения клеток, однако не играет особой роли в изменениях их поведения.

Речь идет об очень важном принципе научных исследований. Во многих ситуациях мы видим корреляцию между какими-то двумя явлениями, но из этого еще не следует, что между ними существует реальная взаимосвязь. Вот один пример. Существует четкая взаимосвязь между развитием рака легких и сосанием леденцов от кашля. Разумеется, из этого не вытекает, что сосание леденцов от кашля вызывает рак легких. Просто для многих людей один из первых симптомов рака легких — постоянный кашель. А человек, страдающий от такого кашля, наверняка будет пытаться облегчить свое положение при помощи леденцов.

Подтверждение того, что укорачивание теломер действительно приводит к клеточному старению, появилось в 1990-е годы. Ученые показали: увеличивая длину теломер в фибробластах, можно добиться того, что клетки перестанут стареть и будут жить практически вечно10.

Теперь общепризнано, что теломеры действуют как своего рода молекулярные часы, ведущие обратный отсчет по мере нашего взросления. Пока еще не все детали ясны. В этой области биологам непросто вести исследования — по целому ряду причин. Начнем с того, что в любой клетке 92 теломерных участка (по одному на каждый конец каждой хромосомы) имеют неодинаковую длину. Поэтому трудно задать какие-то стандарты длины теломеры, применимые по всей клетке, не говоря уж о стандартах, применимых для всего организма человека11. Кроме того, при исследовании взаимосвязей теломер и старения очень трудно использовать излюбленное модельное животное ученых — мышь. Дело в том, что у грызунов чрезвычайно длинные теломеры, гораздо длиннее человеческих. Как известно, средняя продолжительность жизни у грызунов гораздо меньше, чем у человека. А значит, длина теломер, по-видимому, не единственный определяющий фактор старения. Однако результаты многолетних исследований говорят: у человека теломеры играют весьма важную роль.

Забота о шнурках

Мы точно знаем одно: наши клетки не сдаются процессу старения без боя. У них есть механизмы, при помощи которых они пытаются дольше сохранять теломеры длинными и нетронутыми. Именно поэтому наши клетки проявляют так называемую теломеразную активность. Теломеразная система добавляет новые ТТАГГГ-мотивы на концы хромосом, по сути, восстанавливая важные участки мусорной ДНК, которые утрачиваются при делении клеток. Теломеразная активность требует двух компонентов. Во-первых, требуется особый фермент (теломераза), который пристраивает необходимые повторяющиеся последовательности к концам хромосом. Во-вторых, требуется кусок РНК, определенная последовательность, которая служит матрицей для фермента, чтобы тот добавлял к хромосомам нужные нуклеотидные основания.

Итак, концевые участки наших хромосом в значительной степени полагаются на мусорную ДНК, геномный материал, не кодирующий белки. Сами по себе теломеры можно счесть генетическим мусором. Чтобы поддерживать их существование, клетка использует ген, который служит для выработки РНК, однако никогда не используется как матрица для синтеза белка. Причем РНК сама по себе — молекула, выполняющая жизненно важные функции в человеческом организме12,13.

Но если наши клетки снабжены механизмом для поддержания длины теломер (при помощи теломеразной системы), почему же теломеры все-таки постепенно укорачиваются? Почему эта система не работает как надо, что в ней не так?

Возможно, причина коренится в том факте, что существует вообще очень мало биологических систем, способных хорошо работать без контроля. Теломеразная активность в наших клетках подвергается весьма жесткому контролю. Патологическое исключение — раковые клетки. Зачастую они в результате адаптации проявляют высокую теломеразную активность и имеют удлиненные теломеры. Это один из факторов, приводящих к агрессивному росту и чрезмерному размножению клеток многих злокачественных опухолей. Вероятно, наши клеточные системы достигли своего рода эволюционного компромисса. Длина теломер поддерживается на уровне, необходимом для того, чтобы мы прожили достаточно долго и успели размножиться (а дальше уже неважно, если рассуждать с точки зрения эволюции). Однако теломеры не слишком длинны: при чрезмерной их протяженности люди массово умирали бы от рака уже в раннем возрасте.

Базовая длина теломеры для конкретного человека задается на сравнительно раннем этапе его развития, в тот момент, когда происходит так называемый нехарактерный всплеск теломеразной активности14. Теломеразная активность также высока в зародышевых (половых) клетках, которые порождают яйцеклетки и сперматозоиды15. Оно и понятно: наше потомство должно унаследовать от нас теломеры приличной длины.

Во многих тканях человеческого организма содержатся так называемые стволовые клетки. При необходимости они производят замену для клеток. Когда требуются новые клетки, стволовая клетка копирует свою ДНК и затем распределяет ее между двумя дочерними клетками. Одна из этих дочерних клеток обычно в ходе своего развития становится полнофункциональной клеткой-заменой, а другая — новой стволовой клеткой, которая точно таким же образом может создавать замены.

Среди наиболее «занятых» разновидностей клеток человеческого организма — тип стволовых клеток, порождающий все клетки крови16, в том числе красные кровяные тельца (эритроциты) и те клетки, которые борются с инфекцией. Такие стволовые клетки размножаются с невероятной скоростью. Это происходит из-за того. что нам постоянно требуется восполнять запас иммунных клеток, противостоящих инородным патогенам, которые встречаются нам каждый день. Нужно постоянно пополнять и запас красных кровяных телец: их средняя продолжительность жизни невелика — примерно 4 месяца. Человеческий организм каждую секунду вырабатывает примерно по 2 миллиона эритроцитов17: фантастическая производительность. Для этого требуется чрезвычайно активная популяция стволовых клеток, практически постоянно находящаяся в состоянии деления. Теломеразная активность в этих стволовых клетках повышена, но в конце концов и они страдают от укорачивания теломер18,19. Вот почему пожилые люди сильнее подвержены риску инфекций, чем более молодые взрослые. В сущности, у стариков просто становится всё меньше иммунных клеток. В этом одна из причин, по которым онкологические заболевания так распространены среди пожилых людей. Обычно наша иммунная система хорошо справляется с разрушением аномальных клеток, но эффективность отслеживания нарушений падает по мере уменьшения числа стволовых клеток.

Почему же все-таки длина наших теломер так важна? Это ведь всего-навсего мусорная ДНК. Какая разница, сколько будет копий некодирующего фрагмента ТТАГГГ — несколько тысяч или всего несколько сотен? По-видимому, проблема здесь заключается во взаимосвязи между ДНК теломер и белковыми комплексами, которые соединены с этой ДНК. Если количество повторов теломерной ДНК-последовательности уменьшится, перейдя за критический уровень, конец хромосомы не сможет связываться с достаточным количеством защитных белков. Мы уже видели, к чему приводит нехватка таких белков у мышей: в частности, бедняги могут умирать еще до рождения.

Ну да, это крайний случай. Однако нет никаких сомнений: жизненно необходимо, чтобы теломеры обладали достаточной длиной, позволяющей им связываться с большим количеством защитных белковых комплексов. Мы знаем, что для человека это верно так же, как и для мыши. Оказалось, что существуют люди, унаследовавшие мутации определенных ключевых компонентов систем организма, которые поддерживают нужную длину теломер. Наблюдаемые эффекты не столь разительны, как у генетически модифицированных мышей, но это лишь потому, что эмбрионы, серьезно затронутые такими мутациями, обычно гибнут еще в утробе матери. Однако те мутации, о которых нам известно, приводят к возникновению симптомов заболеваний, связанных с возрастом.

Теломеры и болезни

Речь идет о заболеваниях, причиной которых служат главным образом мутации теломеразного гена, или гена, кодирующего РНК-матрицу, или генов, кодирующих белки, которые защищают теломеры, или гена, который помогает теломеразной системе эффективно работать20.

В сущности, мутации в любом из этих генов могут приводить к сходным эффектам. Главным образом они мешают клеткам поддерживать свои теломеры в нужном состоянии. Поэтому теломеры у пациентов с такими мутациями укорачиваются быстрее, чем у здоровых людей. Вот почему такие пациенты демонстрируют симптомы преждевременного старения. Такие заболевания называются теломерными синдромами человека21.

Врожденный дискератоз — редкое генетическое заболевание, поражающее примерно одного человека на миллион. Пациенты страдают от целого ряда проблем. На коже у них в непредсказуемых местах появляются темные пятна. Во рту возникают пятна белого цвета, которые могут приводить к развитию рака ротовой полости. Ногти на руках и на ногах становятся тонкими и хрупкими. А потом отказывают различные органы, и этот процесс кажется необратимым. Он начинается с дисфункции костного мозга и неполадок в легких. Общий риск возникновения онкологических заболеваний у них также повышен.

При исследовании нескольких семейств, которых коснулся этот недуг, ученые выяснили, что причина заболевания — мутации различных генов. В настоящее время выявлено по меньшей мере 8 таких мутантных генов. Вполне возможно, что на самом деле их еще больше22. Все эти гены обладают одним общим свойством: они участвуют в процессах поддержания нормального существования теломер. А значит, как бы ни искажалась эта область мусорной ДНК, симптомы все равно обычно будут схожи.

Совокупность легочных проблем, возникающих в таких случаях, называют пневмофиброзом. Для пациентов, страдающих этим заболеванием, характерно «короткое дыхание», они много кашляют, поскольку их организм не в состоянии с должной эффективностью выводить углекислый газ из легких и с должной легкостью наполнять их кислородом. Рассматривая их легкие под микроскопом, патологи увидели обширные области, где нормальную ткань заменила воспаленная и фиброзная, напоминающая по своей структуре шрам23.

Такая клиническая и патологическая картина легких довольно часто наблюдается при респираторных заболеваниях. Это побудило ученых обратиться к изучению проб биологического материала пациентов, страдающих идиопатическим пневмофиброзом. Слово «идиопатический» означает, что для заболевания пока не выявлено очевидной причины. Исследователи проверили, нет ли у этих пациентов дефектов генов, которые обеспечивают синтез веществ, защищающих теломеры. В среднем дефекты соответствующих генов удалось выявить почти у каждого шестого пациента, в семье которого страдали этим заболеванием, но мутаций прежде не обнаруживали24,25. Даже у пациентов, в семье которых, по-видимому, не страдали пневмофиброзом, мутации теломерных генов обнаружились в 1–3% случаев26,27. В США около 100 тысяч человек страдают идиопатическим пневмофиброзом, так что, по самым осторожным оценкам, примерно 15 тысяч из них, вероятно, заработали эту болезнь из-за того, что их организм не мог поддерживать теломеры в нормальном состоянии.

Дефекты в механизме, который защищает теломеры, могут становиться причиной еще одного заболевания. Речь идет об апластической анемии — болезни, при которой костный мозг перестает вырабатывать достаточное количество клеток крови28. Это редкий недуг, им страдает примерно 1 человек на полмиллиона. И примерно у 1 из 20 больных наблюдаются мутации фермента теломеразы или соответствующей РНК-матрицы.

У некоторых таких больных могут одновременно наблюдаться и дефекты костного мозга, и дефекты легких, но одна из проблем, как правило, становится клинически очевидной раньше другой. При лечении это может приводить к незапланированным последствиям. Пересадка костного мозга — одна из методик лечения больных апластической анемией. Пациентам дают специальные препараты для профилактики отторжения нового костного мозга их иммунной системой. Некоторые из таких лекарств, как известно, токсичны для легких. Для большинства страдающих апластической анемией это, в общем-то, не проблема. Но для тех, кто имеет дефекты в теломеразной системе, такие медикаменты способны спровоцировать пневмофиброз, который может оказаться летальным29. Иными словами, лекарство в таких случаях может стать причиной смерти.

Существует не совсем обычная генетическая причина, по которой врачи не всегда понимают, что наблюдаемые у пациента симптомы — часть врожденной проблемы с теломерами. Теломеразный комплекс обычно особенно активен в половых клетках: как мы уже знаем, родители должны передавать своим отпрыскам длинные теломеры. Но в некоторых семьях, где наблюдаются мутации генов, кодирующих теломеразу, или мутации сопутствующего РНК-фактора, это не так. А значит, в таких случаях каждое новое поколение передает потомству всё более короткие теломеры. Поскольку симптомы болезни начинают проявляться, когда длина теломер становится меньше определенного значения, каждое следующее поколение рождается всё ближе и ближе к точке критического укорачивания теломер30.

Это приводит к довольно-таки серьезным последствиям. К примеру, дедушка обладает сравнительно длинными теломерами, и пневмофиброз у него развивается только в 60 с лишним. У его сына теломеры уже не такие длинные. Симптомы легочных неполадок проявляются у него в 40 с чем-то лет. А вот третье поколение может получить в наследство по-настоящему короткие теломеры. В результате у внуков проявится апластическая анемия уже в детстве.

Поскольку у старшего и среднего поколения соответствующие болезни возникают лишь в сравнительно позднем возрасте, внук может заболеть еще до того, как у его отца и деда проявятся опасные симптомы, и терапевт будет испытывать трудности при выявлении генетического заболевания в данном семействе. К тому же при более острой и менее острой форме болезни симптомы порой различны.

Эта странная картина, когда у старшего поколения симптомы проявляются слабее и в более позднем возрасте, чем у младшего поколения, чем-то напоминает характер наследования миотонической дистрофии, о котором мы говорили в главе 1. Речь идет о весьма необычном генетическом феномене, и поразительно, что в двух его самых ярких и отчетливых проявлениях эффект, в конечном счете, вызван изменением длины фрагмента мусорной ДНК.

Напрашивается вопрос: почему клетки некоторых тканей подвержены укорачиванию теломер больше других? Пока это не совсем ясно, однако появляются некоторые любопытные модели. Вероятно, активно размножающиеся клетки сильнее рискуют получить дефекты, приводящие к укорачиванию теломер. Классический пример — популяция стволовых клеток крови (мы уже обсуждали это выше). Если эти клетки испытывают трудности с поддержанием нужной длины теломер, то популяция стволовых клеток в конце концов истощится.

Похоже, это объяснение вполне подходит для апластической анемии. Но не для пневмофиброза. Ткань легких реплицируется довольно медленно, однако пневмофиброз распространен среди страдающих теломерными дефектами. Возможно, в клетках легких воздействия укороченных теломер сопряжены с другими факторами, влияющими на геном и функционирование клеток. Клетки эти развиваются сравнительно медленно, поэтому и соответствующие процессы идут не так уж быстро. Возможно, именно поэтому легочные симптомы обычно возникают позже, чем те, причиной которых становятся проблемы со стволовыми клетками крови.

Наши легкие при каждом вдохе подвергаются риску воздействия потенциально опасных веществ. Поэтому неудивительно, что они так отчаянно стараются выносить бремя дефектных теломер. Один из наиболее распространенных источников опасных вдыхаемых соединений — табак. Влияние курения на здоровье человека в мировом масштабе колоссально. По оценкам Всемирной организации здравоохранения около 6 миллионов человек ежегодно умирают из-за курения, причем полмиллиона из них — от воздействия курения вторичного31.

Ученые экспериментально исследовали влияние сигаретного дыма на организм. Они вырастили генетически модифицированных мышей с укороченными теломерами и затем подвергли самых разных мышей воздействию сигаретного дыма32. Результаты показаны на рис. 5.2. По сути, пневмофиброз развивался лишь у зверьков с укороченными теломерами, подвергавшихся воздействию табачного дыма.

Рис. 5.2. Для возникновения пневмофиброза у мышей требуется одновременное действие двух факторов: генетического дефекта и негативного влияния окружающей среды. У мышей с укороченными теломерами, не подвергающихся воздействию табачного дыма, пневмофиброз не развивается, как и у мышей с нормальными теломерами, которых подвергали воздействию дыма. Однако у мышей с укороченными теломерами, еще и подвергавшихся воздействию дыма, все-таки возникало это заболевание.

Разумеется, курение — не единственный фактор, влияющий на состояние здоровья человека, хотя отказ от курения — вероятно, самое разумное, что вы можете сделать для своего здоровья. Однако главный фактор, влияющий на здоровье жителей богатых стран, — это сам по себе возраст. Но так было не всегда. Нынешним положение вещей стало после того, как мы достигли впечатляющего прогресса — медицинского, фармакологического, социального, технологического — в борьбе с тем, что раньше обеспечивало нам преждевременную могилу, со всеми этими старомодными штуками вроде инфекционных заболеваний, младенческой смертности, недоедания.

Тик-так, говорит теломера

Основным фактором риска развития хронических заболеваний сейчас является старение. Это большая проблема. По оценкам специалистов, к 2025 году на Земле будут проживать свыше 1,2 млрд человек старше 60 лет33. Заболеваемость онкологическими недугами резко увеличивается после 40 лет. Если вы доживете до 80, у вас с 50%-ной вероятностью разовьется какой-то тип рака. Примерно такова же вероятность развития у вас какого-то сердечно-сосудистого заболевания, если вам больше 65 и вы живете в США34. Есть и масса других статистических данных, рисующих столь же безотрадную картину. Но зачем нагонять на себя тоску? Все-таки приведу еще один факт: британский Королевский психиатрический колледж объявил, что примерно 3% людей старше 65 лет страдают от клинической депрессии, а у каждого шестого человека такого возраста — симптомы менее острой депрессии, заметные для окружающих35.

Впрочем, все мы знаем, что два человека одного и того же возраста могут сильно отличаться друг от друга по состоянию здоровья. Стив Джобс, один из основателей компании Apple, умер от рака в 56 лет. Фауджа Сингх пробежал свой первый марафон в 89 лет, а свой последний на данный момент — в 101 год (нет-нет, это был не один и тот же марафон). Мы еще далеко не всё знаем о том, какие факторы контролируют продолжительность жизни. Похоже, это почти всегда некая комбинация генетики, среды и простого везения. Но мы твердо уверены в одном: примитивный подсчет количества прожитых лет дает в таких случаях лишь весьма неполную картину.

Мы начинаем осознавать, что теломеры могут служить довольно сложными молекулярными часами. На скорость укорачивания теломер могут оказывать влияние факторы среды. А значит, теломеры можно использовать не только как хронологические маркеры, но и как вехи здоровых лет, прожитых человеком. Получаемые данные пока носят предварительный характер. Результаты не всегда согласуются друг с другом. Отчасти это происходит из-за того, что регулярное корректное измерение теломер не так-то просто осуществлять (мы уже говорили об этом). Обычно мы измеряем их в клетках, до которых нам легко добраться. Как правило, это белые кровяные тельца (лейкоциты), а это не всегда самый подходящий тип клеток для исследования. Но несмотря на все оговорки, уже сейчас ученые начали получать довольно интригующие данные.

Вернемся к нашему старому врагу — табаку. В рамках одного из исследований проанализировали длину теломер в лейкоцитах более чем 1000 женщин. Обнаружилось, что у курящих теломеры короче, причем скорость их укорачивания увеличивается примерно на 18% за каждый год курения. По подсчетам исследователей, ежедневное выкуривание 20 сигарет в течение 40 лет эквивалентно потере почти 7,5 лет «теломерной жизни»36.

Исследование уровня смертности среди людей старше 60 лет, проведенное в 2003 году, показало, что у обладателей самых коротких теломер уровень смертности выше всего (во всяком случае, так утверждают авторы работы)37. Похоже, основной вклад здесь вносит смертность от сердечно-сосудистых заболеваний. Результаты подтверждает проведенное позже и более масштабное исследование, в ходе которого изучалась другая выборка пожилых людей38. Исследование представителей сообщества ашкеназов ста лет и старше показало, что более длинные теломеры сопутствуют меньшему проявлению симптомов старческих болезней и более впечатляющим когнитивным функциям по сравнению с людьми столь же преклонного возраста, обладающими более короткими теломерами39.

Иногда мы забываем, что на состояние здоровья и на продолжительность жизни влияют не только физические факторы. Хронический психологический стресс может оказаться весьма вредным для человека, оказывая негативное воздействие на самые разные системы организма, включая сердечно-сосудистую и иммунную40. Страдающие от хронического психологического стресса обычно умирают в более раннем возрасте, чем их сверстники, меньше подвергающиеся стрессу. Исследование женщин в возрасте от 20 до 50 лет показало, что у группы страдавших от хронического стресса теломеры короче по сравнению с группой, не испытывавшей такого стресса. Ученые, проводившие эксперимент, подсчитали, что воздействие хронического стресса, по сути, отнимает примерно 10 лет жизни41.

В гигантском пантеоне глобальных проблем здоровья, которых вообще-то запросто можно избежать, но которые оказывают на человечество колоссальное воздействие, ожирение борется за пальму первенства с курением. Вновь обратившись к данным Всемирной организации здравоохранения, мы обнаружим, что во всем мире из-за ожирения или лишнего веса ежегодно умирает около 3 миллионов человек. Почти четверть случаев сердечно-сосудистых заболеваний можно приписать ожирению или лишнему весу. Для страдающих диабетом второго типа вклад ожирения еще выше (почти половина всех случаев такого диабета обусловлена лишним весом). Для онкологических заболеваний этот показатель составляет, по разным оценкам, от 7 до 41%42. Экономический и социальный эффект такой эпидемии ожирения устрашает.

Недавние исследования показали, что существует довольно тесное взаимодействие между системами наших клеток, пытающимися регулировать энергетические и метаболические флуктуации и как-то реагировать на них, и теми системами, которые поддерживают целостность генома, в том числе и стабильность теломер43. Поэтому неудивительно, что ученые вовсю анализируют длину теломер в клетках тех, кто страдает ожирением. В статье, авторы которой изучали воздействие курения на длину теломер, кое-что сказано и о воздействии ожирения: они исследовали и это. Как выясняется, укорачивание теломер, связанное с ожирением, выражено еще сильнее, чем при курении, и эквивалентно потере примерно 9 лет жизни44.

Если все это побудит вас держать собственный вес под контролем, делайте это осторожно. По данным ООН, страной с наибольшей долей людей, которым 100 лет и больше, является Япония45. Почти наверняка в этом играет роль традиционное японское меню, ибо у японцев, переключившихся на рацион западного типа, нередко развиваются западные же хронические болезни. В основе традиционного японского стола — еда с низким содержанием белков и сравнительно высоким содержанием углеводов. Опыты на крысах показывают, что низкобелковая диета в ранний период жизни может быть одной из причин увеличения продолжительности жизни, а это, в свою очередь, часто связывают с длинными теломерами46.

Так что если вы подумываете перейти на высокобелковую и низкоуглеводную диету по Аткинсу или Дюкану, обсудите-ка это сначала со своей мусорной ДНК. Подозреваю, что ваши теломеры могут отнестись к этому неодобрительно.


1 Сведения о сборах даются по: http://www.imdb.com.

2 Этот ген называется Myc.

3 Цит. по: Boxer LM, Dang CV. Translocations involving c-myc and c-myc function. Oncogene. 2001 Sep 20(40):5595–610.

4 Moyzis RK, Buckingham JM, Cram LS, Dani M, Deaven LL, Jones MD, Meyne J, Ratliff RL, Wu JR. A highly conserved repetitive DNA sequence, (TTAGGG) n, present at the telomeres of human chromosomes. Proc Natl Acad Sci USA. 1988 Sep; 85(18):6622–6.

5 Vaziri H, Schächter F, Uchida I, Wei L, Zhu X, Effros R, Cohen D, Harley CB. Loss of telomeric DNA during aging of normal and trisomy 21 human lymphocytes. Am J Hum Genet. 1993 Apr; 52(4):661–7.

6 Ген называется Gcn5. Он кодирует белок, обладающий целым рядом функций. Одной из них является добавление ацетильной группы к лизину — аминокислоте, содержащейся в некоторых белках.

7 Научный термин для клеточного самоубийства — программируемая гибель клеток, или апоптоз.

8 Hayfick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res. 1961 Dec; 25:585–621.

9 Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human fibroblasts. Nature. 1990 May 31;345(6274):458–60.

10 Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Moring GB, Harley CB, Shay JW, Lichtsteiner S, Wrigh WE. Extension of life-span by introduction of telomerase into normal human cells. Science. 1998 Jan 16;279(5349):349–52

11 Полезное обсуждение проблемы см. в: Armanios M, Blackburn EH. The telomere syndromes. Nat Rev Genet. 2012 Oct; 13(10):693–704.

12 Полезный обзор см. в: Armanios M, Blackburn EH. The telomere syndromes. Nat Rev Genet. 2012 Oct; 13(10):693–704.

13 Основной фермент при этом кодируется геном TERT, а РНК-матрица кодируется геном TR, который также именуется TERC.

14 Wright WE, Piatyszek MA, Rainey WE, Byrd W, Shay JW. Telomerase activity in human germline and embryonic tissues and cells. Dev Genet. 1996;18(2):173–9.

15 Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, Coviello GM, Wright WE, Weinrich SL, Shay JW. Specific association of human telomerase activity with immortal cells and cancer. Science. 1994 Dec 23;266(5193):2011–5.

16 Такие клетки называются гемопоэтическими стволовыми клетками (ГПСК), или гемоцитобластами.

17 http://www.nlm.nih.gov/medlineplus/ency/anatomyvideos/000104.htm.

18 Chiu CP, Dragowska W, Kim NW, Vaziri H, Yui J, Thomas ТЕ, Harley CB, Lansdorp PM. Differential expression of telomerase activity in hematopoietic progenitors from adult human bone. Stem Cells. 1996 Mar; 14(2):239–48.

19 Vaziri H, Dragowska W, Allsopp RC, Thomas ТЕ, Harley CB, Lansdorp PM. Evidence for a mitotic clock in human hematopoietic stem cells: loss of telomeric DNA with age. Proc Natl Acad Sci USA. 1994 Oct 11 ;91(21):9857–60.

20 Этот ген называется Dyskeratosis congenita 1 (DKC1), или дискерин. (Дискерином называется также белок, связывающий РНК-теломеразу. — Прим. перев.)

21 Armanios M, Blackburn EH. The telomere syndromes. Nat Rev Genet. 2012 Oct; 13(10):693–704.

22 Armanios M, Blackburn EH. The telomere syndromes. Nat Rev Genet. 2012 Oct; 13(10):693–704.

23 Отличное клиническое описание и полезные иллюстрации см. в: Calado RT, Young NS. Telomere diseases. N Engl J Med. 2009 Dec 10;361(24):2353–65.

24 Alder JK, Chen JJ, Lancaster L, Danoff S, Su SC, Cogan JD, Vulto I, Xie M, Qi X, Tuder RM, Phillips JA 3rd, Lansdorp PM, Loyd JE, Armanios MY. Short telomeres are a risk factor for idiopathic pulmonary fibrosis. Proc Natl Acad Sci USA. 2008 Sep 2;105(35):13051–6.

25 Armanios MY, Chen JJ, Cogan JD, Alder JK, Ingersoll RG, Markin C, Lawson WE, Xie M, Vulto I, Phillips JA 3rd, Lansdorp PM, Greider CW, Loyd JE. Telomerase mutations in families with idiopathic pulmonary fibrosis. N Engl J Med. 2007 Mar 29;356(13):1317–26.

26 Tsakiri KD, Cronkhite JT, Kuan PJ, Xing C, Raghu G, Weissler JC, Rosenblatt RL, Shay JW, Garcia CK. Adult-onset pulmonary fibrosis caused by mutations in telomerase. Proc Natl Acad Sci USA. 2007 May 1; 104(18): 7552–7.

27 Cronkhite JT, Xing C, Raghu G, Chin KM, Torres F, Rosenblatt RL, Garcia CK. Telomere shortening in familial and sporadic pulmonary fibrosis. Am J Respir Crit Care Med. 2008 Oct 1;178(7):729–37.

28 Полезное описание см. в: see http://www.patient.co.uk/doctor/aplastic-anaemia.

29 de la Fuente J, Dokal I. Dyskeratosis congenita: advances in the understanding of the telomerase defect and the role of stem cell transplantation. Pediatr Transplant. 2007 Sep; 11(6):584–94.

30 Armanios M, Chen JL, Chang VP, Brodsky RA, Hawkins A, Griffin CA, Eshleman JR, Cohen AR, Chakravarti A, Hamosli A, Greider CW. Hapioinsufflciency of telomerase reverse transcriptase leads to anticipation in autosomal dominant dyskeratosis congenita. Proc Natl AcadScl USA. 2005 Nov 1;102(44):15960–4.

31 http://www.who.int/mediacentre/factsheets/fs339/en.

32 Alder JK. Guo N, Kembou F, Parry EM, Anderson CJ, Gorgy Ai, Walsh MF, Sussan T, Biswal S, Mitzner W, Tuder RM, Armanios M. Telomere length is a determinant of emphysema susceptibility. Am J Respir Crit Care Med. 2011 Oct 15;184(8):904–12.

33 Цит. пo: Sahin E, Depinho RA. Linking functional decline of telomeres, mitochondria and stem cells during ageing. Nature. 2010 Mar 25;464(7288):520-528.

34 Статистика дается по данным American Heart Association on Older Americans & Cardiovascular Diseases (Американской ассоциации изучения сердца пожилых американцев и сердечно-сосудистых заболеваний), 2013.

35 http://www.rcpsych.ac.uk/healthadvice/problemsdisorders/depressioninolderadults.aspx.

36 Valdes AM, Andrew T, Gardner JP, Kimura M, Oelsner E, Cherkas LF, Aviv A, Spector TD. Obesity, cigarette smoking, and telomere length in women. Lancet. 2005 Aug 20-26;366(9486):662–4.

37 Cawthon RM, Smith KR, O’Brien E, Sivatchenko A, Kerber RA. Association between telomere length in blood and mortality in people aged 60 years or older. Lancet. 2003 Feb l;361(9355):393–5.

38 Fitzpatrick AL, Kronmal RA, Kimura M, Gardner JP, Psaty BM, Jenny NS, Tracy RP, Hardikar S, Aviv A. Leukocyte telomere length and mortality in the Cardiovascular Health Study. J Gerontol A Biol Sci Med Sci. 2011 Apr; 66(4):421–9.

39 Atzmon G, Cho M, Cawthon RM, Budagov T, Katz M, Yang X. Siegel G, Bergman A, Huffman DM, Schechter CB, Wright WE, Shay JW, Barzilai N, Govindaraju DR, Suh Y. Evolution in health and medicine Sackler colloquium: Genetic variation in human telomerase is associated with telomere length in Ashkenazi centenarians. Proc Natl Acad Sci USA. 2010 Jan 26;107 Suppl 1:1710–7.

40 Segerstorm SC, Miller GE. Psychological stress and the human immune system: a meta-analytic study of 30 years of inquiry. Psychol Bull. 2004 Jul; 130(4):601–30.

41 Epel ES, Blackburn EH, Lin J, Dhabhar FS, Adler NE, Morrow JD, Cawthon RM. Accelerated telomere shortening in response to life stress. Proc Natl Acad Sci USA. 2004 Dec 7;101(49):17312–5.

42 http://www.who.int/mediacentre/factsheets/fs311/en/index.html.

43 Полезное введение в эту область см. в: Tennen RI, Chua KF. Chromatin regulation and genome maintenance by mammalian SIRT6. Trends Biochem Sci. 2011 Jan; 36(1):39–46.

44 Valdes AM, Andrew T, Gardner JP, Kimura M, Oelsner E, Cherkas LF, Aviv A, Spector TD. Obesity, cigarette smoking, and telomere length in women. Lancet. 2005 Aug 20-26;366(9486):662–4.

45 UNFPA report on Ageing in The Twenty-First Century (Доклад Фонда ООН в области народонаселения «Старение в XXI веке»), 2012.

46 Jennings BJ, Ozanne SE, Dorling MW, Hales CN. Early growth determines longevity in male rats and may be related to telomere shortening in the kidney. FEBS Lett. 1999 Apr 1;448(1):4–8.


0
Написать комментарий

    Элементы

    © 2005-2017 «Элементы»