Сет Ллойд

«Программируя Вселенную». Глава из книги

Глава 7. Универсальный компьютер

Моделирование Вселенной

Мы показали, как можно использовать законы физики для эффективного выполнения квантовых вычислений. Теперь давайте посмотрим, как квантовый компьютер может эффективно моделировать «работу» законов физики.

«Квантовое моделирование» — это процесс, в ходе которого квантовый компьютер моделирует другую квантовую систему. Из-за квантовых странностей разных типов классические компьютеры могут моделировать квантовые системы лишь громоздким и неэффективным образом. Но квантовый компьютер сам по себе является квантовой системой, способной демонстрировать полный спектр квантовых странностей, поэтому он может эффективно моделировать другие квантовые системы. Каждая из частей моделируемой квантовой системы отображается на набор кубитов в квантовом компьютере, и взаимодействия между этими частями становятся последовательностью квантовых логических операций. Такое моделирование может быть настолько точным, что поведение компьютера будет неотличимым от поведения самой моделируемой системы.

Вспомним, что, если две системы, обрабатывающие информацию, могут эффективно моделировать друг друга, они логически эквивалентны. Поскольку Вселенная может выполнять квантовые вычисления, а квантовый компьютер может моделировать Вселенную, Вселенная и квантовый компьютер обладают одной и той же мощностью обработки информации: по существу, они идентичны.

К настоящему времени квантовое моделирование является одной из самых замечательных экспериментальных демонстраций силы квантовых вычислений, а также их практическим применением, наиболее существенным для понимания идеи вычислительной Вселенной. Квантовые системы обычно делают много вещей сразу, поэтому их трудно моделировать классическим образом. Смоделировать один ядерный спин, который может делать две вещи квантово-параллельным образом, уже не так плохо, но 10 спинов могут выполнять 1024 дела сразу, 20 спинов могут сделать 1 048 576 дел сразу и т.д.

Как правило, чтобы проследить динамику квантовой системы, классический компьютер должен назначить отдельный расчет для каждой части квантовой волновой функции, но количество дел, которые выполняет квантовая система, растет очень быстро с ее размером. Смоделировать динамику даже относительно небольшой квантовой системы, состоящей из 300 ядерных спинов, как уже говорилось, совершенно невозможно.

Но квантовый компьютер не испытывает никаких затруднений, выполняя множество таких расчетов посредством квантового параллелизма. В 1982 г. Нобелевский лауреат Ричард Фейнман предложил гипотетическое устройство, которое он назвал универсальным квантовым имитатором. Чтобы смоделировать 300 ядерных спинов, универсальному квантовому имитатору потребовалось бы всего 300 квантовых битов. Если мы можем запрограммировать взаимодействия между 300 кубитами так, чтобы они имитировали взаимодействия между 300 спинами, то динамика кубитов сможет моделировать динамику спинов.

Фейнман просто указал на возможность существования универсального квантового имитатора; он не дал никаких ключей к тому, как его можно создать. В 1996 г. я показал, что обычные квантовые компьютеры как раз и являются универсальными квантовыми имитаторами; то есть любой желаемый набор квантово-механических взаимодействий можно запрограммировать на квантовом компьютере, и тогда можно выполнить квантовое моделирование путем многократного выполнения квантовых логических операций с кубитами компьютера1. (Методы квантового моделирования независимо от меня и примерно в это же время разработали Кристоф Залка из Бернского университета и Стивен Визнер из Тель-Авивского университета.)

Кроме того, я смог показать, что квантовое моделирование будет эффективным в том смысле, что, во-первых, количество кубитов, необходимых для моделирования, будет равно числу битов в моделируемой системе, а во-вторых, число операций, которые должен выполнить квантовый компьютер в процессе моделирования, будет пропорционально тем отрезкам времени, за которые система должна быть промоделирована.

Фейнман высказал догадку, а я доказал, что квантовые компьютеры могут функционировать как универсальные квантовые имитаторы, и их динамика может быть аналогом любой желаемой физической динамики. Квантовое моделирование происходит простым и непосредственным образом. Во-первых, отобразим части квантовой системы, которая будет промоделирована, на наборы квантовых битов; каждая часть моделируемой системы получает как раз достаточное количество кубитов для того, чтобы «схватить» ее динамику. Во-вторых, отобразим взаимодействия между частями системы на квантовые логические операции с кубитами, соответствующими частям системы. Универсальная природа квантовых логических операций гарантирует, что такие отображения способны выразить любую желаемую динамику.

Квантовое моделирование — не просто теоретическая концепция; оно было выполнено экспериментально, например в алгоритме поиска сомножителей Питера Шора. Однако в отличие от алгоритма Шора, который до сих пор позволил разложить на сомножители только число 15, квантовое моделирование было выполнено в масштабах, которые не может повторить классический компьютер. В течение нескольких последних лет группа Дэвида Кори в Массачусетском технологическом институте выполнила квантовое моделирование с миллиардами и миллиардами кубитов. Такими квантовыми имитаторами являются кристаллы фтористого кальция (мне нравится называть их «оружейной зубной пастой»). Их диаметр около сантиметра, они светло-пурпурного цвета, который придают этому веществу следовые количества атомов других типов. Каждый такой кристалл содержит больше миллиарда миллиардов атомов. Используя методы квантового ЯМР-вычисления для манипулирования ядерными спинами в кристаллах, Кори заставил эти спины вступать в самые разные взаимодействия, причем большая их часть не встречается в природе. Чтобы смоделировать такую искусственную квантовую динамику на обычном классическом компьютере, потребовалось бы два в степени миллиард миллиардов элементарных расчетов. Таким образом, квантовые имитаторы Кори намного мощнее любого классического компьютера, существующего или в принципе возможного.

Квантовое моделирование Кори — на сегодня, бесспорно, наиболее впечатляющий пример квантовых вычислений. Но когда я впервые представил его результаты в своих лекциях, то был удивлен: многие слушатели стали возражать против того, чтобы назвать такое массивное квантовое моделирование вычислением. «Это не вычисление; это — эксперимент!» — утверждали они. Мне было нелегко понять такую реакцию. Конечно, Кори проводил эксперимент, а именно, эксперимент по квантовой обработке информации. По-видимому, это и смутило некоторых слушателей. Даже если они соглашались, что Кори выполнял вычисления, то считали, что это были аналоговые квантовые вычисления. Им было сложно воспринимать эти аналоговые квантовые вычисления как «цифровые» квантовые вычисления, вроде алгоритмов разложения на множители или поиска.

Чем отличаются аналоговые и цифровые компьютеры? Классический аналоговый компьютер манипулирует непрерывными переменными, например напряжением. Так происходит потому, что классические переменные, такие как положение, скорость, давление и объем, непрерывны, и чтобы моделировать классическую динамику, аналоговый компьютер тоже должен быть непрерывным. Классический цифровой компьютер имеет дело с дискретными величинами, ведь биты дискретны; он может иметь дело с непрерывными величинами, но только превратив их в дискретные.

Однако для квантового компьютера нет разницы между аналоговыми и цифровыми вычислениями. Кванты, по определению, дискретны, и их состояния могут быть отображены на состояния кубитов непосредственно, без аппроксимации. Но вместе с тем кубиты также и непрерывны, из-за своей волновой природы; их состояния могут быть непрерывными суперпозициями. И аналоговые квантовые компьютеры, и цифровые квантовые компьютеры состоят из кубитов; и аналоговые квантовые вычисления, и цифровые квантовые вычисления происходят посредством логических операций между этими кубитами. Наша классическая интуиция подсказывает, что аналоговые вычисления по сути своей непрерывны, а цифровые вычисления должны быть дискретными. Но когда дело касается квантовых вычислений, как, впрочем, и во многих других случаях, классическая интуиция нас подводит. Аналоговый квантовый компьютер и цифровой квантовый компьютер — это одно и то же устройство.

Моделирование и реальность

Вопрос о разнице между моделированием и реальностью возник очень давно. В VI в. до нашей эры в первых строках «Дао дэ цзин», «Книги пути и достоинства», Лао Цзы описал проблему, свойственную любому описанию реальности: «Путь, которым можно следовать, не есть истинный Путь. Имя, которое может быть названо, не есть истинное Имя». Оригинальный китайский текст «Дао дэ цзин» очень компактен и его можно толковать 10 000 способов, но Лао Цзы, кажется, полагает, что, давая вещам названия и для этого назначая словам то или иное значение, мы вводим искусственные различия, которые не могут охватить всю полноту Вселенной. (В виде автомобильной наклейки на бампер эта же мысль выглядит так: «Не говори об этом. Будь этим».) Философ Арчи Бам предложил менее буквальный перевод этого высказывания: «Природу невозможно описать полностью, ведь такое описание природы должно было бы в точности воспроизводить природу». Иначе говоря, совершенное описание Вселенной было бы неотличимо от самой Вселенной.

Давайте посмотрим, что произойдет, если применить изречение Лао Цзы к квантовому компьютеру, моделирующему Вселенную. Как мы увидим, Вселенная, по крайней мере доступная нам часть Вселенной, конечна в пространстве и времени. Все фрагменты доступной нам части Вселенной можно в принципе отобразить на конечное число кубитов. Аналогичным образом физическая динамика Вселенной, состоящая из взаимодействий между этими частями, может быть отображена на логические операции с этими кубитами.

Нельзя сказать, что мы точно знаем, как провести такое отображение. Мы знаем, как отобразить поведение элементарных частиц на кубиты и логические операции. Иначе говоря, мы знаем, как Стандартная модель физики элементарных частиц — модель, описывающая наш мир с поразительной точностью, — может быть отображена в квантовом компьютере. Но мы еще не знаем, как в квантовом компьютере может быть отображено поведение гравитации, по той простой причине, что физики еще не пришли к полной теории квантовой гравитации. Мы еще не знаем, как моделировать Вселенную, но, возможно, скоро узнаем.

Теперь вспомним «Дао дэ цзин». В квантовом компьютере, моделирующем Вселенную, будет столько же кубитов, сколько их во Вселенной, и логические операции с этими кубитами будут в точности моделировать динамику Вселенной. Такой квантовый компьютер был бы физическим воплощением демона маркиза Пьера-Симона де Лапласа: он моделировал бы поведение Вселенной в целом. Такое квантовое вычисление составило бы полное описание природы, и потому было бы неотличимо от самой природы. Так что, по сути, можно считать, что Вселенная выполняет квантовые вычисления. Точно так же, из-за того что поведение элементарных частиц может быть непосредственно отображено на поведение кубитов, взаимодействующих посредством логических операций, моделирование Вселенной квантовым компьютером неотличимо от самой Вселенной.

Обычный взгляд состоит в том, что Вселенная — это элементарные частицы, и ничего больше. Это так, но столь же верно было бы сказать, что Вселенная — это только биты, а скорее, только кубиты, и ничего больше. Поговорка гласит, что если нечто ходит как утка и крякает как утка, то это утка и есть. Так что с этой минуты и впредь мы примем, что если Вселенная хранит и обрабатывает информацию подобно квантовому компьютеру и для наблюдателя ее поведение неотличимо от поведения квантового компьютера, то Вселенная действительно является квантовым компьютером.

История вычислительной Вселенной

Я не смог найти ни одного описания Вселенной как компьютера, созданного ранее XX в. Конечно, древнегреческие атомисты считали, что Вселенная состоит из крошечных взаимодействующих частиц, но они не выразили ясно мысль о том, что эти атомы обрабатывают информацию. Лаплас мыслил своего демона, способного вычислить все будущее Вселенной, как абстрактное существо, а не как саму Вселенную. (Кстати, он и не называл это существо демоном; по-моему, он считал его некой божественной сущностью.) Чарльзу Бэббиджу, кажется, не приходило в голову, что его вычислительную машину можно использовать как модель физической динамики, как и Алану Тьюрингу, хотя Тьюринга интересовало происхождение структур и сложности, и он вел серьезные исследования в этой области.

Первое явное описание Вселенной как компьютера я нашел в замечательном научно-фантастическом рассказе Айзека Азимова «Последний вопрос», написанном в 1956 г. В этом рассказе люди создают серию все более и более мощных аналоговых компьютеров, чтобы исследовать сначала свою галактику, а потом и другие галактики. (В одной сетевой пародии на этот рассказ компьютер, который Азимов назвал Мультиваком, переименовали в Google.)

В той части рассказа, где действие происходит в 2061 г., персонажи Лупов и Аделл, «слуги» Мультивака, спорят о будущем Вселенной и решают спросить компьютер, будет ли существовать человечество через десятки миллиардов лет, когда все звезды завершат свое горение. Лупов говорит:

— Все звезды родились в изначальном космическом взрыве, что бы это ни было, и кончить свой путь они должны практически одновременно... Возьмем триллион лет и что увидим? Мрак, максимальный уровень энтропии, тепловая смерть...

Теперь настал черед Аделла не соглашаться.
— А мы со временем что-нибудь придумаем, чтобы все восстановить.
— Никогда.
— Почему? Когда-нибудь.
— Никогда!
— Спроси Мультивака.
— Сам спроси. Предлагаю пари на пять долларов, что это невозможно.


Аделл был пьян уже настолько, что принял пари. В то же время он был еще достаточно трезв для того, чтобы составить необходимую последовательность символов и операторов, которая в переводе на человеческий язык была бы эквивалентна вопросу: «Сможет ли человечество однажды без чистого расхода энергии снова заставить Солнце сиять, когда оно начнет умирать от старости?» Или, формулируя короче: «Как уменьшить общее количество энтропии в объеме всей Вселенной?»

Мультивак скушал вопрос и стал глух и нем. Огоньки на пультах и панелях перестали мигать, затихло привычное щелканье реле. Мультивак погрузился в глубокое раздумье. Затем, когда изрядно струхнувшие служители уже не могли дальше сдерживать дыхание, внезапно ожил телетайп, подключенный к этой части Мультивака. Напечатано было пять слов: «ДАННЫХ НЕДОСТАТОЧНО ДЛЯ ОСМЫСЛЕННОГО ОТВЕТА»2.

В рассказе жизнь продолжается. Люди исследуют галактику, потом другие галактики, потом становятся бессмертными (в конце концов, это научная фантастика), следующие версии Мультивака становятся все более мощными, в конечном счете пронизывая всю ткань Вселенной. Люди продолжают задавать компьютеру тот же вопрос — вопрос о том, как обратить второе начало термодинамики, и компьютер дает все тот же ответ. Наконец, когда весь человеческий разум вместе со всем остальным содержимым Вселенной оказывается включенным в окончательное воплощение Мультивака, универсальный компьютер AC наконец понимает, о чем его спрашивали на протяжении миллиардов лет, и говорит: «ДА БУДЕТ СВЕТ!»

Обратите внимание, в рассказе Азимова Вселенная превращается в компьютер постепенно, она не является компьютером с самого начала. Нас же интересует, как Вселенная стала вычислять с самого начала. Связи между вычислением и физикой в начале 1960-х гг. изучал Рольф Ландауэр из IBM. Идею о том, что вычисления могут происходить в соответствии с фундаментальным свойством законов физики сохранять информацию, выдвинули в 1970-х гг. Чарльз Беннетт из IBM, а также Эдвард Фредкин, Томмазо Тоффоли и Норман Марголюс из Массачусетского технологического института. Идею о том, что Вселенная может быть своего рода компьютером, независимо друг от друга предложили в 1960-х гг. Фредкин и Конрад Цузе — первый человек, который построил современный электронный компьютер. Фредкин и Цузе предположили, что Вселенная может быть чем-то вроде классического компьютера, так называемым клеточным автоматом, состоящим из регулярного массива битов, взаимодействующих со своими соседями. Позже идеи Фредкина и Цузе развивал и углублял Стивен Вольфрам.

Идея использовать клеточные автоматы как основу для теории Вселенной весьма привлекательна. Проблема этого подхода состоит в том, что классические компьютеры скверно воспроизводят свойства квантов, например запутанность. Более того, как мы отмечали, чтобы смоделировать крошечный квантово-механический фрагмент Вселенной, потребовался бы классический компьютер размером с саму Вселенную. Поэтому так трудно представить, чтобы Вселенная могла оказаться классическим компьютером, наподобие клеточного автомата. Если она действительно такова, то огромная часть ее вычислительного аппарата недоступна наблюдению.

Физические ограничения вычислений

Если мы знакомы с квантовой механикой и квантовыми вычислениями, то на удивление легко определить, какой объем вычислений может выполнять любая физическая система. Начнем с того, что все физические системы содержат информацию. Рассмотрим электрон, который может быть найден в одном из двух мест, «здесь» или «там». Электрон, который может быть или «здесь», или «там», хранит один бит информации. (Как сказал Рольф Ландауэр, «информация — величина физическая».) Когда электрон перемещается отсюда туда, его бит инвертируется. Другими словами, всякий раз, когда физическая система изменяет свое состояние, — всякий раз, когда что-то происходит, — информация, которую хранила эта система, преобразуется и обрабатывается. (Обработка информации — тоже физический процесс.)

Тем, где могут находиться электроны и как они перемещаются отсюда туда, управляют законы физики. Законы физики определяют, сколько информации может содержать та или иная физическая система и как быстро эта информация может быть обработана. Физика устанавливает окончательный предел мощности компьютеров. В статье «Абсолютные физические пределы вычислений» (Ultimate Physical Limits to Computation) я показал, что вычислительная мощность любой физической системы может быть подсчитана как функция количества доступной системе энергии, вместе с размером этой системы3. В качестве примера я применил эти пределы, чтобы определить максимальную вычислительную мощность килограмма вещества, ограниченного литровым объемом. Я представил себе ноутбук, который весит примерно килограмм и занимает примерно литр пространства. Этот портативный компьютер весом в один килограмм и объемом в один литр я назвал «абсолютным ноутбуком». В следующий раз, когда вы решите купить новый ноутбук, сначала сравните его с абсолютным.

Какова мощность абсолютного ноутбука? Первое фундаментальное ограничение вычислительных характеристик связано с энергией. Энергия ограничивает скорость. Например, рассмотрим наш однобитовый электрон, который перемещается отсюда туда. Чем больше энергии у электрона, тем быстрее он может выполнить перемещение и тем быстрее он может инвертировать свой бит.

Абсолютный ноутбук
«Абсолютный ноутбук» — это компьютер массой один килограмм и объемом один литр, где каждая элементарная частица используется для целей вычисления. Абсолютный ноутбук может выполнить десять миллионов миллиардов миллиардов миллиардов миллиардов миллиардов (1052) логических операций в секунду с десятью тысячами миллиардов миллиардов миллиардов (1031) битов.

Максимальную частоту, с которой бит может менять свое состояние, определяет одна полезная теорема — теорема Марголюса — Левитина. Норм Марголюс, как уже было отмечено, — один из пионеров физики вычислений; вместе со своим научным руководителем Томмазо Тоффоли из Массачусетского технологического института он показал, что простые физические системы, вроде сталкивающихся друг с другом атомов, могут выполнять универсальные цифровые вычисления. Лев Левитин из Бостонского университета4 одним из первых стал использовать законы физики для вычисления пропускной способности каналов связи, например оптоволоконных кабелей, для передачи информации. Эти ученые объединили свои усилия и в 1998 г. опубликовали свою теорему5.

Теорема Марголюса — Левитина гласит, что максимальная частота, с которой физическая система (электрон, например) может переходить из одного состояния в другое, пропорциональна энергии системы; чем больше доступной энергии, тем меньше времени нужно электрону, чтобы перейди отсюда туда. Эта теорема очень общая. Для нее несущественно, какая система хранит и обрабатывает информацию; важно только, сколько энергии есть в системе, чтобы обрабатывать эту информацию. Рассмотрим, например, атомы и электроны в моем компьютере. Их температура немного выше комнатной. Каждый атом и электрон раскачиваются, и количество энергии, связанной с типичными колебаниями, остается одним и тем же для атома и для электрона. Энергия на одно колебание просто пропорциональна температуре, независимо от того, говорим мы об атоме или об электроне. Следовательно, частота, с которой электрон в компьютере может перемещаться от одного состояния к другому, отсюда туда, или от 0 к 1, — такая же, что и скорость, с которой атом может переходить из одного состояния в другое. Электроны и атомы инвертируют свои биты с одной и той же частотой.

Теорема Марголюса — Левитина дает метод для вычисления максимальной частоты, с которой бит может менять свое состояние. Возьмем количество энергии, доступной для инвертирования бита, умножим ее на 4 и разделим на постоянную Планка. В результате мы получим число возможных инверсий бита за секунду. Применяя эту формулу к атомам и электронам в моем компьютере, мы выясним, что каждый колеблющийся атом и электрон изменяют свое состояние и свой бит примерно 30 трлн (30 × 1012) раз в секунду.

Скорость, с которой атомы и электроны инвертируют свои биты, обычно намного больше, чем скорость, с которой это делает обычный компьютер. Компьютер, на котором я печатаю текст, вкладывает в зарядку и разрядку конденсаторов, которые хранят его биты, в миллиард раз больше энергии, чем используют атомы и электроны на свои колебания и на инверсию своих битов. Но мой компьютер действует в 10 000 раз медленнее атомов. Медлительность моего компьютера не противоречит теореме Марголюса — Левитина. Эта теорема дает только верхний предел того, как быстро может менять свое состояние бит. Бит может делать это медленнее максимальной скорости, допускаемой теоремой. Квантовый компьютер, однако, всегда инвертирует свои биты с максимальной скоростью.

Теорема Марголюса — Левитина устанавливает предел количества элементарных операций (опов), которые может выполнять бит в секунду. Предположим, что мы оставим неизменным количество энергии, доступное для изменения состояния битов, но теперь разделим эту энергию между двумя битами. Каждый из этих двух битов получит половину энергии нашего первоначального бита и сможет работать вдвое медленнее. Но общее количество переходов в секунду останется тем же.

Если разделить количество доступной энергии между десятью битами, то каждый из них будет менять свое состояние в десять раз медленнее, но общее количество переходов в секунду останется тем же. Так же как она безразлична к размерам системы, эта теорема не «заботится» о том, откуда берется доступная энергия. Максимальное количество операций в секунду — это энергия E, умноженная на 4 и деленная на постоянную Планка.

Теорема Марголюса — Левитина позволяет легко вычислить мощность абсолютного ноутбука. Энергию абсолютного ноутбука, доступную для вычисления, можно вычислить с помощью известной формулы Эйнштейна \( E = mc^2 \), где \(E\) — энергия, \(m\) — масса ноутбука, а \(c\) — скорость света. Введя в эту формулу массу нашего абсолютного компьютера (один килограмм) и скорость света (300 млн м в секунду), мы обнаружим, что у абсолютного ноутбука есть почти 100 миллионов миллиардов (1017) джоулей доступной энергии для выполнения вычислений. Если привести тот же результат в более знакомой форме энергии, у ноутбука есть около 20 млрд (2 × 1013) килокалорий доступной энергии, что эквивалентно 100 млрд шоколадных батончиков. Это очень много энергии.

Другой знакомый нам эквивалент — это количество энергии, высвобождаемой при ядерном взрыве. У абсолютного ноутбука есть двадцать мегатонн (20 млн т в тротиловом эквиваленте) энергии, доступной для вычисления. Это сопоставимо с количеством энергии, высвобождаемой при взрыве большой водородной бомбы. По существу, когда наш абсолютный ноутбук выполняет вычисления на максимальной скорости, используя для изменения состояния битов каждую доступную калорию, изнутри это выглядит как ядерный взрыв. Элементарные частицы, которые хранят и обрабатывают информацию в абсолютном ноутбуке, движутся при температуре в миллиард градусов. Абсолютный ноутбук похож на маленький кусочек Большого взрыва. (Технологии упаковки должны будут совершить серьезный прорыв, прежде чем кто-то захочет положить абсолютный ноутбук к себе на колени.) В итоге количество операций, которое может выполнить наш маленький, но мощный компьютер, составляет огромную величину: миллион миллиардов миллиардов миллиардов миллиардов миллиардов (1051) операций в секунду. Компании Intel есть, к чему стремиться.

Но сколь велик путь, который придется пойти компании Intel? Вспомним закон Мура: в последние полвека количество информации, которую могут обрабатывать компьютеры, и скорость, с которой они ее обрабатывают, удваивается каждые восемнадцать месяцев. Множество технологий — последней из них стали интегральные схемы — сделали возможным такой рост мощности обработки информации. Нет никаких причин, по которым закон Мура должен продолжать действовать год за годом; это закон человеческой изобретательности, а не закон природы. В какой-то момент закон Мура перестанет работать. В частности, никакой ноутбук не может вести вычисления быстрее, чем абсолютный ноутбук, описанный выше.

Но сколько времени потребуется компьютерной индустрии, чтобы при существующей скорости технического прогресса создать абсолютный ноутбук? Мощность компьютеров удваивается каждые полтора года. За пятнадцать лет она удваивается десять раз, то есть увеличивается на три порядка. Иначе говоря, нынешние компьютеры в миллиард раз быстрее, чем были гигантские электромеханические машины всего пятьдесят лет назад. Нынешние компьютеры выполняют порядка триллиона логических операций в секунду (1012). Следовательно (если закон Мура продержится до тех пор), мы сможем купить абсолютный ноутбук в магазине примерно в 2205 г.

Количество энергии, доступной для вычислений, ограничивает скорость вычислений. Но скорость вычислений — не единственная характеристика, которая нас интересует, когда мы покупаем новый ноутбук. Не менее важен объем памяти. Какова емкость абсолютного жесткого диска?

Внутренности абсолютного ноутбука заполнены элементарными частицами, которые раскачиваются, как сумасшедшие, при миллиарде градусов. Те же методы, которые специалисты по космологии используют для измерения количества информации, присутствовавшего во время Большого взрыва, можно использовать для измерения числа битов, запечатленных абсолютным ноутбуком. Раскачивающиеся частицы абсолютного ноутбука запечатлевают около 10 000 миллиардов миллиардов миллиардов битов (1031). Это очень много битов — намного больше, чем информации, которая хранится на жестких дисках всех компьютеров в мире.

Сколько времени потребуется компьютерной индустрии, чтобы реализовать технические требования к памяти абсолютного ноутбука? Закон Мура для объема памяти сейчас действует быстрее, чем закон Мура для скорости вычислений: емкость жесткого диска удваивается почти каждый год. При таком темпе для того, чтобы создать абсолютный жесткий диск, потребуется всего семьдесят пять лет.

Конечно, закон Мура может действовать лишь до тех пор, пока человеческая изобретательность будет находить новые способы уменьшать размеры компьютеров. Трудно постоянно уменьшать размеры соединений, транзисторов и конденсаторов, и чем более миниатюрными становятся компоненты компьютеров, тем труднее ими управлять. Закон Мура уже много раз объявляли мертвым из-за той или иной хитроумной технической проблемы, которая на первый взгляд казалась неразрешимой. Но каждый раз хитроумные инженеры и ученые находили новый способ разрубить узел технологий. Кроме того, как мы уже сказали, у нас есть надежные экспериментальные данные о том, что компоненты компьютеров можно уменьшить до размера атомов. Существующие квантовые компьютеры уже хранят и обрабатывают информацию на уровне атомов. При нынешней скорости миниатюризации закон Мура не позволит достичь уровня атомов еще в течение сорока лет, так что определенные надежды в его отношении сохраняются.

Вычислительная мощь Вселенной

Теперь, когда мы знаем, сколько вычислений может выполнить кусочек вещества, лежащий у нас на коленях, давайте обратимся к более мощному компьютеру — как тот, что описал Айзек Азимов в «Последнем вопросе», к компьютеру размерами с космос. Предположим, все вещество и вся энергия в космосе поставлены на службу вычислений. Насколько мощным будет такой компьютер? Мощность космологического компьютера, состоящего из всего, что есть во Вселенной, можно определить с помощью тех же самых формул, которые помогли нам исследовать мощность абсолютного ноутбука.

Прежде всего, энергия ограничивает скорость работы. Количество энергии во Вселенной известно нам с довольно высокой степенью точности. Большая ее часть «заперта» в массе атомов. Если посчитать все атомы во всех звездах и всех галактиках, прибавив вещество межзвездных облаков, мы обнаружим, что общая средняя плотность Вселенной составляет примерно один атом водорода на кубический метр.

Во Вселенной есть и другие формы энергии. Например, свет содержит энергию (хотя гораздо меньше, чем ее содержится в атомах). Скорости вращения далеких галактик указывают на существование иных, невидимых источников энергии. Формы, которые они принимают, нам неизвестны; среди возможных кандидатов на роль «скрытой массы» — объекты с такими причудливыми названиями, как «зануда», «пьяница» и «мачо»6. Далее, аномальное ускорение расширения Вселенной предполагает присутствие еще одной формы энергии, которую сейчас принято называть квинтэссенцией7. Представляется, что общее количество энергии этих экзотических форм не более чем на порядок превышает сумму энергии в обычном веществе, которое мы можем наблюдать, и это не имеет принципиального значения для расчета общего количества вычислений, которые может выполнять Вселенная.

Прежде чем перейти к оценке вычислительной мощности Вселенной, давайте определим, что же мы измеряем. Данные текущих наблюдений свидетельствуют о том, что Вселенная пространственно бесконечна, она простирается во всех направлениях, безо всяких границ. В пространственно бесконечной Вселенной количество энергии также бесконечно; следовательно, количество операций и число битов во Вселенной тоже бесконечны.

Но наблюдения также показывают, что возраст Вселенной конечен: ей немного меньше 14 млрд лет. Информация не может распространяться быстрее скорости света. Возраст Вселенной конечен, скорость света конечна, поэтому часть Вселенной, о которой мы можем получить информацию, также конечна. Говорят, что та часть Вселенной, о которой мы можем получить информацию, находится «в пределах горизонта». О том, что происходит за горизонтом, мы можем только гадать. Числа, которые мы сейчас найдем, представляют собой количество вычислений, которое может происходить в пределах видимой Вселенной, вплоть до горизонта. Обработка информации, происходящая за горизонтом, не может повлиять на результат каких бы то ни было вычислений, выполненных в видимой части Вселенной начиная с Большого взрыва. Так что, когда мы измеряем «вычислительную мощность Вселенной», на самом деле мы измеряем «вычислительную мощность видимой Вселенной».

Со временем горизонт расширяется, причем в три раза быстрее скорости света. Когда мы смотрим в телескоп, мы смотрим назад во времени, и самые отдаленные объекты, которые мы можем видеть, возникают перед нами такими, какими они были 14 млрд лет назад. Однако к моменту наших наблюдений вследствие расширения Вселенной эти объекты отодвинулись еще дальше, и сейчас они находятся в 42 млрд световых лет от нас. По мере расширения горизонта перед нашими глазами появляется все больше и больше объектов, и количество энергии, доступной для вычислений в пределах расширяющегося горизонта, увеличивается. Количество вычислений, которые могут быть выполнены в пределах горизонта с начала расширения Вселенной, со временем растет.

Горизонт отстоит от нас на 42 млрд световых лет. Каждый кубический метр видимой Вселенной в среднем содержит массу примерно одного атома водорода. Энергия каждого атома водорода составляет \(E = mc^2\). Суммируя всю энергию во Вселенной, мы видим, что она содержит порядка 100 миллионов миллиардов миллиардов миллиардов миллиардов миллиардов миллиардов миллиардов (1071) джоулей энергии. Почти вся эта энергия — свободная энергия, доступная для выполнения работы или вычислений. Это очень много калорий! Чтобы так много есть, нужно быть размером с саму Вселенную.

Теперь вычислим максимальную скорость, с которой Вселенная может обрабатывать информацию. Применим для этого теорему Марголюса — Левитина: возьмем количество энергии в пределах горизонта, умножим его на 4 и разделим на постоянную Планка. Окажется, что каждую секунду компьютер, состоящий из всей энергии Вселенной, может выполнять примерно 100 000 гуголов (10105) операций8. Ну а за 14 млрд лет существования Вселенной этот космологический компьютер мог бы выполнить около 10 000 миллиардов миллиардов гуголов (10122) операций.

Для сравнения рассмотрим число операций, которые были выполнены всеми компьютерами на Земле с момента их изобретения. В соответствии с законом Мура половина этих вычислений была сделана в последние полтора года. (Всякий раз, когда у вас есть процесс, мощность которого удваивается каждые полтора года, половина этой мощности возникла в последние полтора года.) На Земле почти миллиард компьютеров. Тактовая частота этих компьютеров — в среднем около гигагерца. Во время каждого такта обычный компьютер выполняет несколько меньше 1000 элементарных операций. Год состоит примерно из 32 млн секунд. Таким образом, за последние полтора года все компьютеры на Земле выполнили порядка 10 миллиардов миллиардов миллиардов (1028) операций. Ну а за всю историю вычислений на Земле компьютеры выполнили всего в два раза больше операций.

Сколько битов объема памяти доступно космологическому компьютеру? Снова, чтобы определить доступный объем памяти, нужно подсчитать количество битов, хранимых каждым атомом и каждым фотоном. Так же как и при вычислении объема памяти абсолютного ноутбука, это количество битов можно подсчитать с помощью методов, предложенных Максом Планком сто лет назад. В результате мы увидим, что космологический компьютер может хранить 100 миллиардов миллиардов миллиардов миллиардов миллиардов миллиардов миллиардов миллиардов миллиардов миллиардов (1092) битов информации — это намного больше, чем вся информация, запечатленная всеми компьютерами на Земле. На Земле почти миллиард компьютеров, и у каждого в среднем почти 1000 млрд (1012) битов памяти. Все вместе они содержат менее чем 1000 миллиардов миллиардов (1021) битов.

Космологический компьютер может выполнить 10122 операций с 1092 битами. Это большие числа, но в них нет ничего запредельного. Когда я в первый раз вычислил количество операций в компьютере размерами со Вселенную, моей первой реакцией было разочарование: «И всё?»

Да, это всё. Никакой компьютер не сможет вычислить больше за всю историю Вселенной. Но и этого вполне достаточно. Квантовые компьютеры могут моделировать физические системы. Поэтому у квантового компьютера, способного выполнить 10122 операций с 1092 битами, достаточно мощности, чтобы вычислить все, что мы можем наблюдать во Вселенной в пределах горизонта. (Если принять во внимание не только биты, которые могут храниться в элементарных частицах, но и биты, которые могут храниться благодаря квантовой гравитации, о которых мы скоро поговорим, битов может быть больше — порядка 10122.) Это количество операций и битов можно интерпретировать тремя способами:

  1. Они дают верхний предел суммы вычислений, которые могут быть выполнены всей материей Вселенной за все время ее существования. Как мы уже говорили, законы физики налагают фундаментальные ограничения на скорость вычислений и количество доступных битов. Скорость вычислений ограничена количеством доступной энергии, а количество битов ограничено этой энергией и размерами системы, выполняющей вычисления. Размеры Вселенной и количество энергии в ней известны с довольно высокой степенью точности. Никакой компьютер, который повинуется законам физики, не сможет выполнить больше вычислений.
  2. Они дают нижний предел для количества операций и битов, необходимых для моделирования Вселенной с помощью квантового компьютера. Мы уже видели, что квантовые компьютеры особенно эффективны для моделирования других квантовых систем. Чтобы выполнить такое моделирование, квантовому компьютеру нужно по крайней мере столько же битов, сколько их в системе, которую он будет моделировать. Кроме того, чтобы моделировать каждое элементарное событие, происходящее в моделируемой системе, например каждое движение электрона отсюда туда, квантовому компьютеру нужна как минимум одна операция. В квантовом компьютере, который моделирует Вселенную в целом, должно быть по крайней мере столько же битов, сколько во Вселенной, и он должен выполнить как минимум столько же операций, сколько элементарных событий (или операций) произошло с тех пор, как возникла Вселенная.
  3. Третья интерпретация является более спорной. Если мы считаем, что Вселенная выполняет вычисления, то с начала своего существования она, возможно, выполнила 10122 операций с 1092 битами. Вопрос о том, принимать ли такую точку зрения, до некоторой степени дело вкуса. Чтобы сказать, что Вселенная выполнила 10122 операций, нужно определить операцию с точки зрения фундаментальных физических процессов. В компьютере операция происходит, когда меняется значение бита. (В некоторых логических операциях, например в операции «и», компьютер меняет или сохраняет его в зависимости от состояния нескольких других битов.) Здесь мы скажем, что физическая система выполняет операцию всякий раз, когда она прикладывает достаточно энергии в течение достаточного времени, чтобы инвертировать бит. При таком простом физическом определении операции число операций, выполненных любой физической системой, включая Вселенную, можно вычислить, используя теорему Марголюса — Левитина.

Со временем горизонт расширяется, и количество энергии, доступной для записи битов информации и выполнения вычислений, увеличивается. Общее количество выполненных операций и число битов растут как функция возраста Вселенной. В стандартной космологической модели общая сумма энергии в пределах горизонта растет прямо пропорционально возрасту Вселенной. Так как скорость обработки информации пропорциональна доступной энергии, число операций в секунду, которое может выполнять Вселенная в пределах горизонта, также растет пропорционально ее возрасту. Общее количество операций, которое выполнила Вселенная с начала своего существования, пропорционально числу операций в секунду в зависимости от возраста Вселенной; следовательно, общее количество операций, которое выполнила Вселенная со времени Большого взрыва, пропорционально квадрату этого времени.

Аналогичным образом традиционная космология предполагает, что число битов в пределах горизонта растет с возрастом Вселенной, возведенным в степень 3/4. Мощность обработки информации Вселенной со временем стабильно растет. Будущее выглядит прекрасно.

Ну и что?

Мы знаем, как вычисляет Вселенная. Мы знаем, сколько вычислений выполняет Вселенная. «Ну и что? — спросите вы. — Что мне даст представление о Вселенной как о квантовом компьютере?» В конце концов, у нас есть очень хорошая квантово-механическая теория элементарных частиц. Ну и что, если эти частицы также обрабатывают информацию и выполняют вычисления? Нужна ли нам совершенно новая парадигма для осмысления того, как действует Вселенная?

Это разумные вопросы. Давайте начнем с последнего. Обычное представление о Вселенной с точки зрения физики основано на парадигме Вселенной как машины. Современная физика основана на механистической парадигме, в которой мир рассматривается с точки зрения его основных механизмов; фактически механистическая парадигма является основанием всей современной науки. Ее красивое выражение можно найти во вводных абзацах «Левиафана»9 Томаса Гоббса, большого трактата о государстве:

Человеческое искусство (искусство, при помощи которого Бог создал мир и управляет им) является подражанием природе как во многих других отношениях, так и в том, что оно умеет делать искусственное животное. Ибо, наблюдая, что жизнь есть лишь движение членов, начало которого находится в какой-нибудь основной внутренней части, разве не можем мы сказать, что все автоматы (механизмы, движущиеся при помощи пружин и колес, как, например, часы) имеют искусственную жизнь? В самом деле, что такое сердце, как не пружина? Что такое нервы, как не такие же нити, а суставы — как не такие же колеса, сообщающие движение всему телу так, как этого хотел мастер? Впрочем, искусство идет еще дальше, имитируя разумное и наиболее превосходное произведение природы — человека.

Парадигмы очень полезны. Они позволяют нам относиться к миру по-новому, а отношение к миру как к машине помогло совершить практически все научные открытия, в том числе в физике, химии и биологии. Одна из главных величин в механистической парадигме — энергия. Эта книга предлагает новую парадигму, являющуюся расширением этого мощного механистического взгляда: я предлагаю воспринимать мир не просто как машину, но как машину, которая обрабатывает информацию. В этой парадигме есть две основных величины — энергия и информация. Они одинаково важны и взаимодействуют друг с другом.

Точно так же как отношение к телу как к часовому механизму позволило понять физиологию (а в случае Гоббса, внутреннее устройство политического организма), парадигма вычислительной Вселенной помогает по-новому понять то, как работает Вселенная. Возможно, самое важное открытие, к которому можно прийти через взгляд на мир с точки зрения информации, — это разрешение проблемы сложности. Обычная механистическая парадигма не дает простого ответа на вопрос о том, почему Вселенная в целом и жизнь на Земле в частности настолько сложны. В то же время в вычислительной Вселенной ее «врожденная» способность обрабатывать информацию систематическим образом дает начало всем возможным типам порядка, и простым, и сложным.

Вторая идея, основанная на парадигме вычислительной Вселенной, связана с вопросом о том, как вообще началась Вселенная. Как мы уже говорили, одна из главных нерешенных проблем физики — проблема квантовой гравитации. В начале XX в. Альберт Эйнштейн предложил красивую теорию гравитации, известную как общая теория относительности. Это теория, одна из самых изящных физических теорий всех времен, объясняет многие из наблюдаемых черт Вселенной в больших масштабах. Квантовая механика объясняет практически все наблюдаемые черты Вселенной в малых масштабах. Но чтобы предложить общую картину того, как началась Вселенная (что происходило, когда она была новой, маленькой и очень энергичной), нужна теория, объединяющая общую теорию относительности и квантовую механику — две монументально полезных и бесспорно верных теории, которые в целом несовместимы между собой.

Было сделано множество отважных попыток создать квантово-механическую теорию гравитации. Хороший обзор этих попыток можно найти в книге физика-теоретика Ли Смолина «Три пути к квантовой гравитации» (Three Roads to Quantum Gravity), изданной в 2001 г. Но ни один из этих путей еще не привел к пункту назначения. Теория квантовых вычислений предлагает, если хотите, «четвертый путь». Как и с другими подходами, здесь еще нужно провести серьезные дорожные работы. И в любой точке развития подобной теории смертельное столкновение с экспериментом или наблюдением может отбросить ее в кювет. Тем не менее вот карта квантово-вычислительного пути к квантовой гравитации.

Квантовые вычисления и квантовая гравитация

Если мы понимаем, как работают квантовые вычисления, нам будет легко понять, как действует общая теория относительности и как квантовые вычисления могут привести к созданию единой теории гравитации и элементарных частиц. Чтобы увидеть, как квантовые вычисления приводят к общей теории относительности, рассмотрим коммутационную схему квантовых вычислений.

Квантовая коммутационная схема для пространства-времени
Ткань пространства-времени в вычислительной Вселенной соткана из узлов и соединений. В каждом узле взаимодействуют два кубита; карта узлов и соединений дает пути, по которым движутся кубиты, когда они сходятся, взаимодействуют и расходятся вновь

Эта коммутационная схема показывает, что происходит с кубитами в процессе квантового вычисления. Кубиты движутся по «квантовым проводам», которые ведут их к логическим элементам, где они взаимодействуют друг с другом. Новые соединения ведут их к другим логическим элементам, где они взаимодействуют с другими кубитами. Из таких простых элементов состоят все квантовые вычисления. Схема определяет вычисление, задавая каузальную структуру (соединения) вместе с логической структурой (логические элементы). Каузальная структура и логическая структура определяют квантовое вычисление.

Чтобы создать квантовую теорию гравитации на основании квантовых вычислений, нужно показать, что квантовые вычисления включают в себя концепцию пространства и времени вместе с квантовой материей, заполняющей это пространство и время, и что из квантовых вычислений можно вывести общую теорию относительности Эйнштейна. Вывод гравитации из квантовых вычислений должен показать, как гравитация влияет на квантово-механическую материю и как поведение квантово-механической материи влияет на гравитацию. Чтобы иметь какое-то практическое значение, эта теория должна иметь предсказательную силу; иначе говоря, она должна позволять нам сделать как «прогноз назад» (что произошло в первый момент существования Вселенной), так и «прогноз вперед» (что произойдет, когда испарятся черные дыры, то есть об окончательном будущем Вселенной).

Это весьма серьезная задача, и мы, конечно, не решим одним махом все эти проблемы. Квантово-вычислительный подход ко Вселенной — это постоянная программа исследований, а не решение всех проблем физики (хотя мы надеемся решить некоторые из них).

Общая теория относительности — это теория пространства и времени и их взаимодействия с материей. Каждую возможную конфигурацию пространства и времени, взаимодействующих с материей, называют пространством-временем. Наша Вселенная — это одно конкретное пространство-время.

В парадигме вычислительной Вселенной понятия пространства и времени, равно как и их взаимодействие с материей, должны быть выведены из лежащих в основе всего квантовых вычислений. Иначе говоря, каждое квантовое вычисление соответствует возможному пространству-времени — точнее, квантовой суперпозиции нескольких пространственно-временных образований, черты которого выводятся из свойств данного вычисления. Наша первая цель — показать, что возникшее в результате пространство-время подчиняется общей теории относительности Эйнштейна. Затем мы рассмотрим предсказания, которые выдвигает наша теория в отношении вычислительной Вселенной.

Представим себе квантовое вычисление как процесс, встроенный в пространство и время. Каждый логический элемент находится в определенной пространственно-временной точке, а соединения («провода») представляют собой физические пути, по которым квантовые биты перетекают из одной точки в другую. Первое, что нужно отметить, — что есть множество способов встроить квантовые вычисления в пространство и время. Каждый квантовый логический элемент можно разместить в любой точке, где нет другого квантового логического элемента, а «провода», соединяющие логические схемы, можно протянуть по всему пространству. То, что происходит с квантовой информацией в процессе вычислений, не зависит от того, как квантовые вычисления встроены в пространство-время. На языке общей теории относительности динамическое содержание квантовых вычислений является «общековариантным», то есть квантовое вычисление «не заботится» о том, как оно встроено в пространство и время, до тех пор пока кубиты взаимодействуют друг с другом в определенной последовательности.

То, что квантовое вычисление не заботится о том, как оно встроено в пространство-время, означает, что пространство-время, полученное из этого квантового вычисления, подчиняется законам общей теории относительности. Почему? Потому что Эйнштейн вывел законы общей теории относительности, взяв условием, что эти законы не заботятся о том, как фундаментальная физическая динамика материи встроена в пространство-время. При соответствующих допущениях общая теория относительности является единственной теорией гравитации, которая общековариантна.

Точное доказательство того, что пространство-время, возникшее из квантового вычисления, подчиняется законам общей теории относительности, выражается математическим языком, но его можно просуммировать следующим образом. Коммутационная схема квантового вычисления диктует, куда может двигаться информация; она задает каузальную структуру пространства-времени. Но общая теория относительности говорит нам, что каузальная структура пространства-времени определяет почти все его черты; практически единственная особенность, которая остается незафиксированной, — это локальные масштабы длин.

Легко понять, почему для определения полной структуры пространства-времени необходимы локальные масштабы длин. Предположим, здесь, в Массачусетском технологическом институте, я измеряю расстояния с помощью линейки, на которой отмечены равные отрезки. Я измеряю длину «бесконечного коридора» Массачусетского технологического института (это очень длинный, но конечный коридор, идущий по всей длине главного здания, где находится мой кабинет). Я определяю, что длина этого коридора — двадцать пять единиц. Затем я отправляю вам электронное письмо, где пишу: «Длина бесконечного коридора — двадцать пять единиц». Это письмо не содержит информации о фактической длине бесконечного коридора, если вы не знаете длину той единицы, которую я использую.

Чтобы передать вам размер этой единицы, нам нужно установить общий стандарт длины. Так, если я скажу вам, что моя единица длины равна 1 650 763,73 длины волны оранжево-красного света, испускаемого атомом криптона-86 (что соответствует 10 м), и если у вас есть атом криптона-86, то теперь вы знаете, какова длина бесконечного коридора с точки зрения вашего местного масштаба длины. Так как время можно измерить точнее, чем длину, в настоящее время метр определяют как 1/299 792 458 расстояния, которое проходит свет за одну секунду. Если вам так больше нравится, я могу определить свою единицу длины как 10 раз по 1/299 792 458 расстояния, которое проходит свет за одну секунду (и моя единица длины по-прежнему составит 10 м). Теперь, если у вас есть свет и часы, способные измерять малые доли секунды, вы знаете, какова длина бесконечного коридора.

Вернемся к вычислительной Вселенной. Как только мы задали каузальную структуру квантовых вычислений, из всех особенностей пространства-времени остается установить только локальные масштабы длины, и они должны быть записаны на языке волновых свойств локальной квантово-механической материи. «Материя» в вычислительной Вселенной возникает из квантовых логических элементов. Мы помним, что любую форму квантово-механической материи, происходящей из локальных взаимодействий, можно смоделировать или сконструировать из квантовых логических элементов. Квантовые биты составляют своего рода quantum computronium, вычислительную форму материи, способную вести себя как любая элементарная частица. Как и частица, каждый квантовый логический элемент соответствует волне, которая колеблется вверх и вниз определенное число раз, пока квантовые биты преобразуются квантовым логическим элементом. Число колебаний волны логического элемента называют действием (action) логического элемента.

В процессе вычисления кубиты накапливают действие. Общее действие — это просто общее количество колебаний, которым подверглись все кубиты в ходе вычисления. Это известный факт механики, как классической, так и квантовой: поведение любой физической системы полностью определяется ее действием. То, что происходит во время вычисления, целиком и полностью зависит от действия квантовых логических элементов. Как я люблю говорить, действие находится там, где происходит действие.

Уравнения Эйнштейна связывают геометрию пространства-времени с поведением материи в нем. Эта геометрия говорит материи, куда ей нужно двигаться, а материя говорит геометрии, как ей нужно искривляться. Уравнения Эйнштейна связывают искривление пространства-времени в заданной точке с действием в этой точке, в нашем случае — с числом качаний волны квантового логического элемента. Теперь давайте проверим, подходят ли уравнения Эйнштейна для нашей вычислительной картины гравитации.

Чтобы полностью определить кривизну, нужно выбрать локальные масштабы длины. Как только они выбраны, структура вычислительного пространства-времени полностью определена. Легко показать, что локальные масштабы длины всегда можно выбрать так, чтобы получившееся пространство-время подчинялось уравнениям общей теории относительности Эйнштейна. Такое согласие с общей теорией относительности не случайно. (Квантовое вычисление не заботится о том, как оно встроено в пространство-время, поэтому наша теория автоматически является ковариантной. В результате, как только квантовое вычисление оказалось встроенным в пространство-время, у него, по сути, нет другого выбора, кроме как подчиняться уравнениям Эйнштейна.)

Однажды Эйнштейн бросил вызов Джону Уилеру, попросив его выразить общую теорию относительности одной простой фразой. Уилер принял вызов и сказал: «Материя говорит пространству, как ему искривляться, а пространство говорит материи, куда ей двигаться». Давайте перефразируем афоризм Уилера для вычисляющей Вселенной: «Информация говорит пространству, как ему искривляться, а пространство говорит информации, куда ей двигаться». В вычислительной Вселенной пространство заполнено «проводами» — путями, по которым текут потоки информации. Провода говорят информации, куда ей двигаться. Провода соединяются в квантовых логических элементах, где эта информация преобразуется и обрабатывается. Квантовые логические элементы, в свою очередь, говорят пространству, насколько ему нужно искривиться в этой точке. Структура пространства-времени возникает из структуры лежащего в основе вычисления.

Выводимая из вычислительной Вселенной картина квантовой гравитации предсказывает ряд черт Вселенной, которые мы видим вокруг. Она дает прямое объяснение тому, как пространство-время реагирует на присутствие квантово-механической материи. Ее можно использовать для того, чтобы вычислить, как квантовые флуктуации в ранней Вселенной запрограммировали плотность материи и местоположение будущих галактик. Она поддерживает модели формирования и испарения черных дыр. Взаимодействующие кубиты лежащего в основе всего квантового вычисления прекрасно способны воспроизводить феноменологию стандартной модели элементарных частиц. Другими словами, квантовое вычисление представляет собой то, что физики любят называть теорией всего. Если учесть, что «теории всего» очень часто оказываются «теориями почти ничего», я предпочитаю называть ее потенциальной теорией всего. И девиз этой потенциальной теории всего, перефразируя Джона Уиллера, — «Все из кубита!»

Парадигма вычислительной Вселенной для взаимодействия квантовой механики с общей теорией относительности представляет собой ясно видимый путь к квантовой гравитации. Этот путь пролегает через совсем другой ландшафт, чем три дороги Смолина, но его пункт назначения — тот же самый. Эта парадигма все еще находится в процессе разработки. Она дает вполне определенные предсказания о поведении ранней Вселенной и о таких процессах, как испарение черных дыр. Эти предсказания могут быть проверены наблюдениями, например за структурой космического микроволнового фона10, оставшегося после Большого взрыва. Время покажет, приведет ли парадигма вычислительной Вселенной к пониманию квантовой гравитации, или она будет опровергнута наблюдениями и экспериментами.

Несмотря на неизбежную неопределенность, свойственную процессу добычи научной истины, вывод общей теории относительности как следствия квантовых вычислений уже прошел рубеж, которого до сих пор не удалось достичь ни на одной из трех других дорог. Поскольку квантовые вычисления так легко включают в себя и воспроизводят квантовую динамику, теория квантовой гравитации на основе вычислительной Вселенной объединяет общую теорию относительности и стандартную модель элементарных частиц простым и самосогласованным способом. Это достижение позволяет предполагать, что, если мы последуем по пути вычислительной Вселенной, он вполне может привести нас к пункту назначения — к пониманию Вселенной и всего, что в ней есть, с точки зрения того, как она обрабатывает информацию.


1 «Universal Quantum Simulators», Science, Vol. 273, No 5278 (Aug. 23, 1996): 1073–1078.

2 Айзек Азимов. «Последний вопрос». Пер. Е. Дрозд, с некоторыми уточнениями.

3 Nature, Vol. 406 (Aug. 31, 2000): 1047–1054.

4 Бывший сотрудник Института проблем передачи информации Лев Борисович Левитин уехал из СССР в 1973 г. — Прим. ред.

5 Norman Margolus and Lev B. Levitin, «The Maximum Speed of Dynamical Evolution», Physica D, Vol. 120 (1998): 188–195.

6 В оригинале — wimp, wino and macho. Все эти словечки являются английскими названиями объектов, рассматриваемых в качестве кандидатов на роль скрытой массы (темной материи). WIMP — это слабо взаимодействующая массивная частица (Weakly Interacting Massive Particle). Wino — гипотетический суперпартнер W-бозона; название построено из буквы W и суффикса -ino, применяемого для суперпартнеров по аналогии с названием «нейтрино». MACHO — массивный компактный объект галактического гало (Massive Compact Halo Object); к мачо относятся компактные остатки звезд, коричневые карлики, одинокие планеты и другие крупные слабосветящиеся объекты. Сегодня из этого списка наиболее реалистичными кандидатами на роль темной материи считаются «зануды» (WIMPs). — Прим. пер.

7 Название «квинтэссенция» не прижилось. Вместо него сейчас используется термин «темная энергия». — Прим. пер.

8 Гугол — число 10100, т.е. единица со 100 нулями. — Прим. пер.

9 Томас Гоббс. Левиафан, или Материя, форма и власть государства церковного и гражданского. Перевод А. Гутермана. — Прим. пер.

10 В российской литературе космический микроволновый фон называют также реликтовым излучением. — Прим. ред.


9
Показать комментарии (9)
Свернуть комментарии (9)

  • Kyu  | 09.03.2017 | 11:50 Ответить
    Это графомания высшей пробы. Как в квантовых вычислениях закодировать понятие невычислимой функции?
    Ответить
    • Gli4i > Kyu | 10.03.2017 | 12:32 Ответить
      А зачем? Здесь, вроде, речь идёт не о идеях (в Платоновском смысле), а о материи.
      Ответить
      • Kyu > Gli4i | 12.03.2017 | 18:43 Ответить
        В том-то и дело, что материи необязательно ограничиваться рамками познавательных способностей приматов. Скажем, почему бы не существовать физической константе, которая невычислима?
        Ответить
    • electrosnake > Kyu | 16.03.2017 | 06:11 Ответить
      про это писал Пенроуз, в "Road to reality", кажется; что в текущей аксиоматике Дойча универсальный квантовый компьютер не нарушает тезис Черча, но при этом в квантовой гравитации естественным образом возникают суммы по топологическим типам четырехмерных многообразий, которые по крайней мере выглядят невычислимыми (проверка гомеоморфности комбинаторно заданных многообразий по сути равносильна проблеме проверки изоморфизма их фундаментальных групп, которая алгоритмически неразрешима). Там без подробностей, и непонятно, можно ли эти из этих сумм [вернее, из этого гипервычисления] соорудить полноценный оракул, который будет решать проблему останова; но по крайней мере это направление.

      P.S. отдельные лучи радости и добра дизайнерам элементов, которые наконец-то улучшили интерфейс так, что ещё улучшать осталось совсем немного, практически ничего (ну разве что довести ширину ленты до одного пикселя, чтобы можно было просматривать ещё и на apple watch); надеюсь, вниз мотать никто не будет, это был бы совсем уж странный мазохизм.
      Ответить
      • Kyu > electrosnake | 17.03.2017 | 09:39 Ответить
        Спасибо.
        Возможность такого оракула означает нетьюринговость универсального квантового компьютера, и его работу в принципе нельзя проверить классическими компьютерами за любое конечное время. Как то это противоречит формулировкам автора.
        Ответить
        • electrosnake > Kyu | 18.03.2017 | 18:27 Ответить
          так "универсальный квантовый компьютер" - это совершенно конкретная абстракция, вроде машины Тьюринга, которую придумал Дойч, чтобы на нем задачи решать (ставшая популярным после того, как Шор и Гровер научились в этой модели делать что-то быстрее, чем принципиально возможно в классической модели вычислений).

          а про то, что можно "гравитационную квантовую пену" использовать для вычислений - это только гипотеза, там конкретных подходов пока нет даже на уровне абстракций. ещё из той же серии - создание самосогласованных вселенных с замкнутой времениподобной кривой тоже позволяет производить гипервычисления.
          Ответить
  • Gli4i  | 10.03.2017 | 12:37 Ответить
    Много размахиваний руками, а о самом важном — экспериментально проверяемых следствия теории — упомянуто мельком и не вдаваясь в подробности. Неприятно напомнило "космологические гипотезы", периодически всплывающие здесь в комментариях. Возможно эти вопросы подробно разбирались в других главах?

    Опечатка:
    >действием (action) логической элемента
    Ответить
    • editor > Gli4i | 10.03.2017 | 16:01 Ответить
      Спасибо, опечатку исправили.
      Ответить
  • electrosnake  | 16.03.2017 | 06:20 Ответить
    Закон Мура, тем временем, давно уже помер - и, с некоторой вероятностью, обратится - точно так же, как на Луну больше не летают, 7-е поколение процессоров Intel по вычислительной мощности слабее, чем 6-е; хотя и попрохладнее и дешевле.
    Ответить
Написать комментарий
Элементы

© 2005-2017 «Элементы»