Элементы Элементы большой науки

Книжный клуб

Главная / Библиотека
 


Тибо Дамур

«Мир по Эйнштейну». Глава из книги

Глава 4. Эйнштейновская Игра в Мир

Почему же играет большой Ребенок, которого Гераклит видел в космическом Времени (αιων), Ребенок, играющий в Мир?

— Хайдеггер. Принцип Разума

Смещение Меркурия, беседы со Сфинксом

Берлин, Германия, ноябрь 1915 г.

Ноябрь 1915 г. ознаменовал собой рождение общей теории относительности и, таким образом, рождение нового «Мира» в том смысле, который вкладывал в это слово Минковский (die Welt), в смысле Пространства-Времени. Новый мир Эйнштейна не тот, каким он представлялся на протяжении двух тысячелетий, подобный жесткой шахматной доске для игры силы и материи — игры, не оказывающей никакого влияния на доску. Новый мир Эйнштейна принимает активное участие в игре силы и материи. Таким образом, новая Игра в Мир — это игра для четверых, а именно, игра пространства, материи, времени и силы или, еще точнее, игра для двоих: пространства-времени и массы-энергии, в которой все партнеры взаимно влияют друг на друга. Масса-энергия своим присутствием искривляет пространство-время, и, в свою очередь, деформированная шахматная доска пространства-времени определяет правила, по которым закручивается по ней движение массы-энергии.

Когда же новый Одиссей — Эйнштейн — понял, что, наконец, после восьми лет странствий, блужданий и всевозможных препятствий подошел к концу своего путешествия? Этот момент можно указать с высокой точностью. Это произошло между 11 и 18 ноября 1915 г. Действительно, 11 ноября Эйнштейн отправляет в Прусскую академию наук сообщение, в котором он по существу1 говорит об уравнениях \( \textbf{D}(\textbf{g}) = k\textbf{T} \), с тех пор носящих его имя. На тот момент у него не было в распоряжении никаких экспериментальных подтверждений его теории. Однако в последующие дни (до 18 ноября, даты, когда он полностью представил Академии свои результаты) он не только показал, что его теория предсказывает отклонение света Солнцем в два раза большее, чем было им предсказано ранее, но также показал, что она объясняет наблюдавшуюся долгое время аномалию, не имеющую удовлетворительного объяснения.

12 сентября 1859 г. французский астроном Урбен Жан Жозеф Леверье отправил для публикации в Парижскую академию наук текст письма, написанного им Эрве Фаю, в котором он подытоживал свои новые результаты. Леверье был к тому времени уже знаменит сделанным им в августе 1846 г. теоретическим предсказанием существования новой планеты — Нептуна, — которая действительно была обнаружена в скором времени, ночью 23 сентября, и именно в том месте, на которое указывали расчеты Леверье. В последующие годы Леверье организовал грандиозную программу построения первой в истории общей теории движения всех планет. Работая над этой теорией и сопоставляя ее со всевозможными доступными результатами наблюдений в целях как можно более точного фиксирования свободных параметров (в особенности неизвестные a priori массы планет), он встретил «серьезную трудность», которая могла поставить под сомнение закон гравитации Ньютона. Трудность касалась скорости вращения большой оси эллипса, по которому Меркурий совершает свое движение вокруг Солнца.

Все помнят, что, по закону Кеплера, планеты вращаются вокруг Солнца по эллиптическим траекториям. Закон гравитации Ньютона предсказывает такое поведение в приближении, когда рассматривается только одна планета, без учета присутствия других планет. В то же время, если учитывать воздействие, оказываемое другими планетами, очевидно, что движение планеты приобретает возмущенный характер и, в частности, что орбита, по которой она движется, более не фиксирована в пространстве, но медленно «поворачивается» вокруг Солнца. Астрономические наблюдения показывают, что такое поведение действительно существует. Поскольку возмущающие силы, действующие на планету, зависят от масс других планет, можно согласованным образом определить (если верен закон Ньютона) массы всех планет, так как ими должны быть обусловлены все наблюдаемые отклонения от эллиптических траекторий. Это и было грандиозной задачей, которой Леверье посвятил более 10 лет работы. Леверье понял, что может явно определить значения всех масс таким образом, чтобы объяснить возмущения всех орбит, с одним исключением: большая ось эллипса ближайшей к Солнцу планеты, Меркурия, смещалась относительно Солнца немного быстрее, чем ожидалось. Леверье смог объяснить около 93% от всего смещения, но оставалась необъясненная часть, равная 38 угловым секундам в столетие. Можно заметить, что это довольно малая поправка. За одно столетие она достигает угла, под которым виден волосок с расстояния в один метр. Тем не менее Леверье был уверен, что этот необъяснимый эффект имеет место. Столь малый в абсолютном масштабе, он довольно значителен в отношении к прочим характерным величинам: например, с ним связана модификация массы Венеры более чем на 10%, что исключено всеми прочими наблюдениями. В то же время Леверье надеялся объяснить этот эффект существованием другой планеты, еще более близкой к Солнцу, чем Меркурий. Но это и некоторые другие предположения были отброшены, так как не подтверждались наблюдениями, и к тому же многие из них имели последствия, противоречащие установленным фактам.

Убедительного объяснения избыточного смещения перигелия Меркурия не было более 50 лет. Вместе с тем одновременное увеличение точности наблюдений и развитие теории движения планет только подтверждали открытие Леверье и еще более уточняли значение этого смещения: на начало XX в. оно оценивалось примерно в 43 угловые секунды в столетие.

Эйнштейн знал, что любая теория гравитации, отличная от ньютоновской, будет приводить к дополнительному избыточному смещению орбит. Он также знал, что в релятивистской теории, предлагаемой им, эта добавка будет заметна в основном для ближайшей к Солнцу планеты — Меркурия. В самом деле, чем ближе к Солнцу, тем больше становится деформация пространства-времени, и, следовательно, именно там наиболее заметно должны проявляться эффекты теории. Эйнштейн, таким образом, погрузился (между 11 и 18 ноября) в относительно сложное вычисление движения планет в рамках этой теории.

Прежде всего разберемся, как искривленное пространство-время определяет мировую линию планеты. Уже в 1912 г. Эйнштейн понимал, что его принцип эквивалентности требует такого движения планет в пространстве-времени, чтобы их мировые линии были настолько «прямыми», насколько это возможно, или, другими словами, были по возможности наиболее «длинными»2. В 1913 г. совместно со своим близким другом Микеле Бессо ему удалось выполнить некоторую часть вычислений, рассматривая движение одной планеты.

Однако самую трудную часть еще предстояло выполнить — вычисление метрического тензора g, генерируемого Солнцем. Для этого требовалось решить весьма сложные уравнения, написанные 11 ноября. Эйнштейну удалось вычислить деформации Солнцем хроногеометрии пространства-времени вокруг себя до второго порядка приближения. Объединив эти результаты, он смог получить окончательную величину аномального смещения орбиты Меркурия, предсказываемую общей теорией относительности. Чудесным образом были найдены те самые 43 угловые секунды в 100 лет, которые так долго оставались необъясненными! Как Эйнштейн рассказывал своим друзьям, открытие заставило сердце биться чаще и на несколько дней ввело его в состояние счастливой эйфории.

Эйнштейн часто сравнивал Природу со Сфинксом, который предлагает загадки, но почти никогда не дает ответа. В этом случае Природа прямо говорила ему: «Да, идея о том, что масса-энергия деформирует геометрическую структуру пространства-времени, позволяет легко описать то, что так долго не поддавалось объяснению». Именно тогда Эйнштейн окончательно убедился в том, что общая теория относительности «приподнимает краешек большой завесы»3. Он не сомневался, что и другие предсказания на основе общей теории относительности со временем будут подтверждены. При этом, как мы видели в предыдущей главе, большинство физиков продолжали сомневаться вплоть до 1919 г., когда при наблюдении солнечного затмения было непосредственно проверено второе нетривиальное предсказание теории Эйнштейна: тот факт, что лучи света также искривляются при движении через область пространства-времени, деформированную Солнцем, следуя в ней вдоль наиболее прямых допустимых мировых линий.

Волны вибрации пространственно-временного желе

Другой довольно поучительный пример новых возможностей Игры, возникающих в эйнштейновском мире, связан с тем, что обычно называют «гравитационными волнами». Представляя пространство-время в образе упругого желе, гравитационные волны можно уподобить волнам, распространяющимся внутри желе, когда оно колеблется. Заметим, что кусочек желе можно колебать разными способами: можно либо действовать на волокна материи, находящиеся внутри него, либо создавать периодические напряжения на внешней поверхности желе. Эйнштейн понял по крайней мере в 1916 г., что эти два процесса также возможны в случае пространственно-временного желе: распределение массы-энергии в пространстве-времени может «перемещаться» и, таким образом, возбуждать колебательный процесс в хроногеометрии (к примеру, когда две звезды вращаются вокруг общего центра масс, выписывая двойную спираль в пространстве-времени) или же волны вибрации геометрической структуры пространства-времени могут приходить из бесконечности, распространяясь благодаря упругости пространственно-временного желе и уходя затем назад в бесконечность.

Эйнштейн был первым, кто подверг обе возможности математическому анализу. В 1916-м и затем в 1918 г. он показал, что общая теория относительности в самом деле допускает существование гравитационных волн. Он обнаружил, что скорость распространения этих волн была в точности равна скорости света, т. е. 300 000 км/с. Это много больше скорости распространения упругих волн в обычной твердой среде. Например, скорость волн упругих деформаций в стали равна 5 км/с. Интуитивно ясно, что большая скорость распространения гравитационных волн обусловлена чрезвычайной жесткостью (1/k) пространства-времени, или, иными словами, очень маленьким коэффициентом упругости, о котором говорилось выше.

Эйнштейн также рассчитал амплитуду гравитационных волн, испущенных движущимся распределением напряжения-массы-энергии. Он также понял, что эти волны сами по себе являются переносчиками энергии и импульса. Отсюда он вывел, что движущийся сгусток напряжения-массы-энергии испытывает потерю энергию в результате излучения гравитационных волн в бесконечность, и в первом приближении получил выражение для ее величины.

Долгое время считалось, что процесс, предсказанный и описанный Эйнштейном4, соответствует столь малому рассеянию энергии, что не может быть обнаружен в реальности. В самом деле, если мы попробуем оценить энергию излучения гравитационных волн, источник которых можно изготовить на Земле (например, цилиндр в несколько тонн, вращающийся с максимально возможной скоростью, при которой он еще не начинает разрываться), то получим ничтожно малые потери энергии. Ситуация изменилась только в 1970 г. с открытием нового астрофизического объекта, способного конденсировать огромную массу в относительно малом объеме.

В этом контексте особенно важным стало открытие американскими астрономами Расселом Халсом и Джозефом Тейлором в 1974 г. двойного пульсара PSR 1913+16. Речь идет о системе, состоящей из двух нейтронных звезд, вращающихся вокруг центра масс по сильно вытянутым эллиптическим траекториям. В такой системе потеря энергии на гравитационное излучение достаточна, чтобы получить эффект, доступный наблюдению. На деле лучший способ описать то, что было обнаружено, следующий. В ноябре 1915 г. Эйнштейн убедился, что в главном приближении общая теория относительности предсказывает взаимодействие между двумя массивными объектами (посредством деформации пространства-времени между ними), описываемое обычным законом тяготения Ньютона \(F_{Ньютона} = Gmm'/r^2 \). Однако уже в следующем приближении общая теория относительности предсказывает отклонения от закона Ньютона. Грубо говоря, эти отклонения зависят от отношения ν/c между скоростью на орбите и скоростью света. Вычисления этих поправок весьма сложны. Первая поправка к закону Ньютона, пропорциональная квадрату отношения ν2/c2, была впервые получена5 в 1917 г. После открытия двойных пульсаров стало ясно, что требуется значительное увеличение точности вычислений: вплоть до пятой степени отношения ν/c.

Конечный результат вида FЭйнштейна = FНьютона (1 + ν2/c2 + ν4/c4 + ν5/c5) для эйнштейновского взаимодействия между двумя нейтронными звездами был получен6 в 1982 г. Среди всех новых эффектов, входящих в эйнштейновское взаимодействие, слагаемые порядка ν5/c5 играют особую роль. Расчеты показывают, что они отвечают за ту часть гравитационного взаимодействия, которая распространяется между двумя объектами со скоростью света. Другими словами, именно они отражают существование гравитационных волн. Изучение вклада этих слагаемых в движение пульсара показывает, что они служат причиной увеличения частоты обращения системы или, что то же самое, уменьшения периода обращения. Для двойного пульсара PSR 1913+16, чей орбитальный период порядка восьми часов, это уменьшение равно в соответствии с теорией Эйнштейна 67 миллиардным долям секунды за одно обращение. Благодаря очень точным наблюдениям, проводимым в течение нескольких лет, стало возможным измерить уменьшение орбитального периода PSR 1913+16, и результат хорошо совпал, с точностью в несколько десятых процента, с теоретическим предсказанием. Это совпадение — одно из самых красивых подтверждений теории Эйнштейна. Оно также стало первым подтверждением того, что деформации пространственно-временного желе распространяются (в данном случае между двумя нейтронными звездами) со скоростью света.

В 1960-х гг. к ученым, в частности к Джозефу Веберу, пришло понимание того, что возможно, в принципе, детектировать на Земле прибытие гравитационных волн, испущенных в далеких концах Вселенной. Гравитационная волна — это волна деформации пространственно-временной геометрии, распространяющаяся от источника со скоростью света. Поскольку пространственно-временное желе обладает огромной жесткостью, все мыслимые источники (включая самые мощные, такие как две сливающиеся черные дыры) создают крайне малые деформации пространственно-временной геометрии. Однако для лучшего понимания того, как могут выглядеть «волны деформации геометрии», мы последуем Георгию Гамову7 и представим себе гравитационные волны такой большой амплитуды, чтобы человек мог их воспринимать непосредственно. На Земле мы привыкли использовать для описания окружающего пространства евклидову геометрию, где работает теорема Пифагора, притом для треугольников любого размера, и где сумма углов треугольника равна сумме двух прямых углов. Исходя из такой «недеформированной» или, как говорят, «плоской» ситуации, давайте проследим, как Гамов описывает внезапное прибытие гигантской волны деформации геометрии на британский морской курорт.

Профессор — ученый с седой бородой и мистер Томпкинс расположились в холле отеля, чтобы пообсуждать общую теорию относительности, в то время как Мауд, дочь профессора, проявляет свои художественные таланты на пляже, расположенном невдалеке. И вдруг:

«Пока профессор вел беседу, вокруг начали происходить очень необычные вещи: одна часть холла вдруг стала чрезвычайно маленькой, сжав в себе все содержимое, тогда как другая часть выросла до такой степени, что мистеру Томпкинсу показалось, будто целая Вселенная могла бы теперь в ней поместится. Ужасная мысль промелькнула в его голове: что если та часть побережья, где рисовала мисс Мауд, оторвалась от остальной Вселенной и он больше никогда не сможет ее увидеть!»

Теоретические расчеты в общей теории относительности, касающиеся испускания гравитационных волн известными (или предполагаемыми) космическими источниками, показали несбыточность того, что так взволновало мистера Томпкинса. На деле любая точка пространства в любой момент времени пронизана волнами геометрических деформаций. Но амплитуда этих волн невообразимо мала. Самые большие геометрические деформации, которые мы могли бы наблюдать на Земле (один или два раза в год), имеют амплитуду порядка 0,000 000 000 000 000 000 001, или 10−21. Это значит, что прибытие такой волны в холл отеля мистера Томпкинса и профессора сожмет ширину холла на 0,0000000000000000001% и вытянет длину в том же отношении. Ясно, что такие малые эффекты не видны невооруженным глазом!

Физик-экспериментатор Джозеф Вебер был в конце 1950-х гг. первым, кто сформировал представление о современных технологиях, способных обнаружить столь малые деформации. Сегодня, спустя полвека совершенствования техники эксперимента, можно рассчитывать на детектирование гравитационных волн в ближайшие годы. В частности, Соединенные Штаты (проект LIGO) и Европа (проекты VIRGO и GEO) имеют недавно построенные гигантские интерферометры с плечом длиной в километры, которые потенциально способны обнаружить такие деформации8. Огромные усилия в разработке технологий были подкреплены интенсивной теоретической работой международного коллектива по вычислению параметров гравитационных волн, испускаемых различными космическими источниками.

Например, один из самых изученных и самых многообещающих типов источников — система из двух «сливающихся» черных дыр, вращающихся вокруг друг друга. Выше мы говорили, что распространение гравитационного взаимодействия между двумя телами системы со скоростью света приводит к постепенному увеличению орбитальной частоты, что само по себе связано со сближением тел. Этот эффект был экспериментально подтвержден для нескольких двойных пульсаров. После сотен миллионов лет сближения два тела оказываются так близко, что начинают вращаться относительно друг друга со скоростью, близкой к скорости света. Тогда их сближение становится все более и более заметным, орбиты приобретают форму двух переплетенных спиралей, и это продолжается до тех пор, пока эйнштейновское гравитационное взаимодействие не станет столь сильным, что объекты «упадут» друг на друга. В случае двух черных дыр это падение по спирали приводит к их «слиянию» в одну более массивную быстро вращающуюся черную дыру. Если бы мистер Томпкинс оказался в непосредственной близости от двух сливающихся черных дыр, он мог бы стать свидетелем искривления геометрии на относительную величину порядка 10%, что вполне можно наблюдать невооруженным глазом9. Однако, поскольку такие системы достаточно редки во Вселенной, на Земле можно обнаружить лишь сигналы, испущенные системами из очень далеких галактик, расположенных за миллионы световых лет. И потому, учитывая, что амплитуда гравитационных волн во время распространения спадает обратно пропорционально расстоянию от источника, на Земле можно зафиксировать только миниатюрные деформации порядка указанной выше величины.

Размышления обо всем

Другим примером Игры в Мир, нашедшим свое математическое описание в свете теории Эйнштейна, является космология. Термин «космология» существовал и до Эйнштейна, разумеется, но Эйнштейн вдохнул в это слово новый смысл, несравненно более глубокий, нежели ранее. Для понимания, почему космологическое, т. е. глобальное, видение реальности было центральным аспектом его видения общей теории относительности, приведем цитату из письма к Карлу Шварцшильду от 9 января 1916 г., в котором он резюмирует то, что составляет суть этой теории в его понимании:
«Существенная черта моей теории состоит в том, что никакое свойство не может быть приписано пространству самому по себе. Это можно выразить в виде шутки такого толка: если из мира вдруг исчезнет все содержимое, то, следуя Ньютону, останется галилеево инерциальное пространство, тогда как в моем понимании ничего не останется».

Нам потребуется немного уточнить это утверждение, поскольку в настоящее время известно, что общая теория относительности допускает также решения в отсутствие материи. При этом не одно только пространство Минковского является таким решением10, среди прочего существует бесконечное число решений, описывающих вибрационные волны пустого пространства-времени, которые приходят и уходят в бесконечность, не будучи «порождением» какой-либо материи. Силу теории Эйнштейна можно оценить тем, что именно она привела к идее о возможности таких решений. Эйнштейн первым начал думать о силе-материи и пространстве-времени как о неделимом целом. Это неделимое целое имеет название «космос» (в современном, эйнштейновском смысле).

В феврале 1917 г. Эйнштейн написал статью, которая заложила фундамент космологии XX в. и дала первую математическую модель космоса. Трудно переоценить важность концептуального прорыва, который представляет эта статья. Несмотря на то что некоторые современные авторы иногда принижают значимость этой работы, указывая, что в ней была «упущена возможность» предсказания расширения Вселенной. В самом деле, среди прочих упрощающих гипотез Эйнштейн предположил, что космос статичен. Когда же он нашел, что эта гипотеза несовместима с остальными (однородность пространства; замкнутость Вселенной с постоянной положительной кривизной; присутствие равномерно распределенной материи с положительной массой-энергией, но без напряжений), он решил исправить недавно полученные уравнения теории относительности, добавив слагаемое, получившее название «космологическая постоянная». Добавление космологической постоянной позволило ему написать первую единую модель реальности: статический космос Эйнштейна. Вскоре другие ученые, а именно голландец Виллем де Ситтер и русский Александр Фридман, поняли, что возможны также другие модели космоса и что космос, вообще говоря, может быть не только «искривлен пространственно», но и «искривлен во времени» или, другими словами, может расширяться или сжиматься11. Стало ясно, что модификация теории относительности посредством космологической постоянной не является необходимой, если считать космос наполненным материей и искривленным во времени.

Всем известны замечательные плоды такой теории космоса: наблюдения американских астрономов Весто Слайфера и Эдвина Хаббла вкупе с теоретическими работами Жоржа Леметра и Георгия Гамова привели к модели Большого взрыва, которая была подтверждена открытием фонового космического излучения и объяснением плотности космического распределения легких элементов (дейтерий, гелий, литий). Эта модель получила идейное завершение с открытием «первичной фазы инфляции» и того недавно установленного факта, что космос как раз вошел в новую фазу инфляции. За дополнительной информацией мы отсылаем читателя к многочисленной литературе, посвященной описанию современной космологии и ее истоков12.

Мы снова повторяем, что, по нашему мнению, вся концептуальная подоплека космологии XX в. содержится в статье Эйнштейна, написанной в феврале 1917 г. Объединение пространства-времени с силой-материей — содержащего и содержимого — в единое целое было актом исключительного интеллектуального мужества. При этом Эйнштейн осознавал беспрецедентность своего начинания. 4 февраля 1917 г. он писал своему другу Паулю Эренфесту, что «вновь опасается оказаться в психиатрической лечебнице с закрытым ртом из-за теории гравитации». Сегодня релятивистская теория, способная описать огромное количество наблюдений, в большинстве деталей отличается от той, что возникла в голове Эйнштейна в 1917 г. Как ни странно, одна «деталь» эйнштейновского космоса, космологическая постоянная, долго считавшаяся «ошибкой» Эйнштейна, недавно стала восприниматься как существенная и неотъемлемая составляющая модели Вселенной. Сегодня считается, что связанный с ней вклад, получивший новое название темной энергии, представляет около 70% распределения напряжения-энергии во Вселенной13.

В заключение мы коротко прокомментируем понятие «космического времени» в релятивистской теории. В популярных изложениях научных представлений существует тенденция, когда речь идет о космологии и особенно о Большом взрыве, использовать язык, подразумевающий введение временного потока, отмененного специальной теорией относительности. На самом деле, в ней нет ничего подобного. Пространство-время общей теории относительности точно так же «неподвижно», как и пространство Минковского. Большой взрыв не есть «рождение» Вселенной или ее «сотворение ex nihilo», но есть лишь одна из возможных «границ» сильно деформированного пространства-времени. Используя аналогию между уравнениями Эйнштейна и уравнениями теории упругости, можно сказать, что Большой взрыв (или Большое сжатие, тот же процесс, рассматриваемый наоборот14) есть результат преодоления «порога упругости» пространственно-временного желе и перехода к разрывному режиму. Таким образом, в этой аналогии Большой взрыв есть нечто подобное краю разорванной резинки.

Иными словами, бесчисленное многообразие всевозможных эйнштейновских космологических моделей совсем не означает возвращения понятия временного потока и даже, наоборот, предоставляет удивительные примеры «миров», где нереальность этого потока становится осязаемой. Например, среди всех возможных космологических моделей15 можно вообразить пространство-время, где большие взрывы и большие сжатия таковы, что рядом с ними стрела времени направлена внутрь пространства-времени (как это происходит в случае границы нашего пространства-времени, называемой «Большой взрыв»). В таком космосе жители разных областей одного и того же пространства-времени (скажем, близких к какой-либо «нижней» границе или близких к какой-либо «верхней» границе) обнаружат, что время «течет» во взаимно противоположных направлениях16: что является будущим для одного есть прошлое для другого (рис. 10)! Другой пример релятивистского космоса, ставящий под сомнение обычное понятие временного потока, был предложен в 1949 г. известным математиком (и коллегой Эйнштейна по Институту перспективных исследований) Куртом Геделем. В космосе Геделя время способно «идти по кругу». Фактически в нем существуют мировые линии, представляющие историю живущих в этом космосе наблюдателей, которые замыкаются подобно окружности. Наблюдатель, живущий вдоль одной из таких линий, будет испытывать «вечное возвращение» по Ницше, можно сказать, что он будет проживать свою жизнь «по кругу» (в том смысле, что его жизнь будет конечной и будущее будет перетекать в прошлое), тогда как наблюдатель, живущий вдоль бесконечной мировой линии, такой как прямая, будет ощущать линейное время «без поворотов»17.

Рис. 10

Рис. 10. Возможный космос, время в котором не «течет» везде в одном направлении

Итак, эти примеры релятивистских моделей Вселенной действительно обладают тем, что могло бы стать причиной ночных кошмаров Бергсона. Однако они дают так же много пищи для размышлений о том, что же такое время и каков философский смысл открытий Эйнштейна.

Большие деформации пространства-времени: нейтронные звезды и черные дыры

Чтобы завершить обзор новых горизонтов, открытых общей теорией относительности, обсудим ситуацию, когда распределение энергии и напряжения настолько сконцентрировано, что приводит к значительным деформациям хроногеометрии пространства-времени. Такая ситуация возникает в случае нейтронных звезд и черных дыр, что представляет два возможных конечных состояния массивной звезды. Напомним, что основная часть жизни звезды уходит на медленное сжигание ее ядерного топлива. Этот процесс приводит к формированию у звезды слоистой структуры с отличными по ядерному составу слоями, окружающими ядро, которое становится все более и более плотным. Когда первоначальная масса звезды достаточно велика, этот процесс в конце концов приводит к катастрофическим последствиям: ядро, уже намного более плотное, чем обычная материя, коллапсирует под действием собственного гравитационного притяжения. В зависимости от массы, содержащейся в ядре звезды, этот коллапс может привести к формированию или нейтронной звезды, или черной дыры.

Нейтронная звезда имеет массу, приблизительно равную массе Солнца при радиусе около 10 км. Материя в такой звезде состоит в основном из нейтронов (протоны и электроны прореагировали друг с другом и, испустив нейтрино, превратились в нейтроны). Плотность массы-энергии внутри нейтронной звезды достигает 100 млн т на кубический сантиметр. Более того, напряжения в такой звезде (в форме давления нейтронного газа) становятся огромными, что также способствует значительной деформации пространства-времени. При решении уравнений Эйнштейна становится ясно, что нейтронная звезда деформирует хроногеометрию пространства-времени намного сильнее, чем Солнце.

Опишем идею относительных деформаций геометрии, вызванных Солнцем или нейтронной звездой. Напомним, что если бы геометрия была евклидова, то сумма углов треугольника равнялась бы 180°. Обычный треугольник — это фигура, полученная соединением трех точек прямыми линиями. Следуя Эйнштейну, [пространственная] геометрия18 в области присутствия распределения напряжения-энергии более не является евклидовой. Но, несмотря на это, можно определить треугольник как фигуру, полученную соединением трех точек пространства кратчайшими линиями. Представим треугольник (лежащий в плоскости, проходящей через центр объекта), который описывает звезду (Солнце или нейтронную звезду), т. е. треугольник, касающийся сторонами поверхности звезды. Измерить искривление геометрии можно, сопоставив сумму углов такого «описанного» треугольника со значением в евклидовом «недеформированном пространстве (180°). Для Солнца сумма углов построенного таким образом треугольника больше чем 180° на величину порядка трех угловых секунд. Относительная деформация (три угловых секунды, деленные на 180°) составляет лишь четыре миллионные доли. Очень малая деформация геометрии! В то же время сумма углов треугольника, описанного вокруг нейтронной звезды, больше 180° примерно на 70°. В этом случае относительная деформация составляет порядка 40%! Мы видим, в каком смысле нейтронная звезда создает большое искривление геометрии. Отсюда можно заключить, что если имеется подтверждение на опыте корректности описания общей теорией относительности гравитационного поля нейтронной звезды, то также имеется и подтверждение применимости теории в случае больших деформаций пространства-времени. Не вдаваясь в детали19, скажем лишь, что четыре различные системы двойных пульсаров позволили получить 10 независимых подтверждений применимости теории относительности в режиме сильных деформаций пространства-времени. Четыре из них заодно подтверждают реальность распространения гравитационных волн, предсказанных теорией относительности. Заметим, наконец, что некоторые из этих подтверждений имеют превосходную точность с относительной ошибкой порядка трех тысячных долей. Можно добавить, что очень большое число наблюдений в Солнечной системе (в особенности «исторический» опыт по измерению смещения орбиты Меркурия) подтвердило предсказания общей теории относительности в режиме малых деформаций хроногеометрии с точностью по меньшей мере порядка трех тысячных, а в одном случае с исключительной точностью в две стотысячные доли (2 × 10−5).

Все эти непосредственные проверки (равно как и другие, не упомянутые здесь) делают общую теорию относительности одной из самых хорошо подтвержденных теорий современной науки. По этой причине вполне можно относиться к предсказаниям теории относительности с полной серьезностью, даже если эти предсказания еще не получили непосредственного подтверждения. Это как раз ситуация предельных деформаций пространства-времени, имеющих еще большую величину, нежели в случае таких больших нейтронных звезд, которые способны преодолеть «порог упругости» пространственно-временного желе. Когда к обычной упругой среде (желе, кусок резины или металла) прикладывается очень сильное давление, то она проходит последовательно упругий режим (который является обратимым процессом, т. е. таким, что тело возвращается в недеформированное состояние после прекращения давления), чтобы войти (i) в режим пластичности (когда тело деформируется необратимым образом, но не разрушается), а затем (ii) в режим разрыва (когда тело ломается или рвется). Эти два режима имеют аналог в случае упругости пространства-времени. Можно сказать, что формирование черной дыры соответствует режиму пластичности пространственно-временного желе. Тогда можно сопоставить (как мы уже указывали) формирование космологических сингулярностей20 (Большой взрыв или Большое сжатие) с разрывом желе пространства-времени.

Черная дыра является результатом «продолжения» коллапсирования звезды, иными словами, коллапсирования, которое не остановилось на стадии формировании нейтронной звезды. Концепция черной дыры возникла в общей теории относительности не сразу. В январе 1916 г. немецкому физику Карлу Шварцшильду удалось найти первое точное решение только что полученных уравнений Эйнштейна. По идее, эти решения должны были описывать точную форму деформации пространства-времени, создаваемой Солнцем (те же вычисления были проделаны Эйнштейном в ноябре 1915 г., но только до второго порядка приближения). Однако, к удивлению, найденное точное решение обладало странным поведением вблизи своего центра. Эта странность связана с тем, что сегодня называют «горизонтом событий черной дыры», или «границей черной дыры». Потребовалось еще почти 50 лет работы, чтобы понять концептуальный смысл этого поведения. Мы не будем здесь пытаться проследить постепенное развитие концепции черной дыры21, ограничимся лишь тремя важными этапами. Физическая концепция черной дыры как результата «продолженного» коллапсирования звезды была введена Джулиусом Робертом Оппенгеймером и Хартландом Снайдером в 1939 г. Глобальная хроногеометрическая структура черных дыр была описана только в 1960-х гг. в серии работ, в том числе Мартина Крускала и Роджера Пенроуза. Название «черная дыра» было введено Джоном Арчибальдом Уилером на его лекции 29 декабря 1967 г.

Читатель может получить схематичное представление о хроногеометрии пространства-времени черной дыры, возникающей в результате коллапса сферической звезды22, по рис. 11. На нем изображено трехмерное пространство-время с двумя пространственными измерениями и одним временным. Окружность, или, точнее, диск, внизу диаграммы соответствует начальному состоянию в «нулевой» момент времени для звезды в двумерном пространстве. В будущем, т. е. в верхней части рисунка, звезда коллапсирует и последовательно принимает формы дисков, радиусы которых становятся все меньше и меньше. Полученная фигура отражает пространственно-временную историю коллапса звезды. Этот коллапс создает все более плотное распределение массы-энергии-напряжения, которое все больше и больше деформирует хроногеометрию пространства-времени. Для простоты картины мы не стали изображать «песочные часы» (для каждой точки, представляющей события, разделенные с ней небольшим положительным квадратом интервала), но изобразили «световые конусы» (представляющие события, отстоящие друг от друга на интервалы с нулевым квадратом). Более того, мы сохранили только верхнюю часть светового конуса, направленную в будущее. Каждый конус (инфинитезимально) представляет историю испущенной во всех направлениях вспышки света в каждый момент времени и в каждой точке пространства. В общем случае с каждым событием можно ассоциировать «световой коноид» будущего, т. е. фигуру, определенную полной (уже не инфинитезимальной) историей вспышки света, испущенной в данном событии. Как результат, такой коноид есть история светового пузыря, который раздувается из первоначально нулевого радиуса. Внутренность коноида есть «будущее» данного события, т.е. часть пространства-времени, на которую это событие может влиять или куда может посылать информацию. Некоторые из коноидов (в форме тюльпанов и фужеров) представлены на рис. 11.

Рис. 11

Рис. 11. Черная дыра, возникающая в результате коллапса звезды

Существенным элементом, изображенным на рисунке, является образование области пространства-времени (серая зона), откуда ничто не может выйти: ни свет, ни материя, ни информация. Граница между этой серой зоной (называемой «внутренностью черной дыры») и примыкающей к ней светлой зоной называется «горизонтом черной дыры», или поверхностью черной дыры. Те конусы, чьи вершины расположены в светлой зоне («внешность черной дыры»), будут развиваться в коноиды, распространяющиеся (по крайней мере частично) до бесконечности, что отражает возможность распространения сигналов из данной области в бесконечность. В то же время конусы, чьи вершины расположены в серой зоне (внутри черной дыры), будут развиваться без возможности покинуть эту самую зону. И, таким образом, невозможно испустить электромагнитный сигнал в серой зоне так, чтобы он достиг бесконечности. Отсюда и берется прилагательное «черная» для описания этой структуры.

Заметим, однако, что «граница черной дыры», или «горизонт», абсолютно не является черной, на самом деле она представляет собой световой пузырь, который в определенный момент времени начинает покидать центр звезды, но затем застывает в виде пространственно-временного цилиндра. Этот цилиндр (т.е. «верхняя», стационарная часть горизонта) представляет собой пространственно-временную историю светового пузыря, который локально движется наружу со скоростью света, но глобально «бежит на месте». Такое примечательное поведение иллюстрирует факт того, что в черной дыре «напряжения», оказываемые распределением материи, превысили предел упругости и достигли режима пластичности, когда пространственно-временное желе начинает походить на поток, текущий в дыру. В самом деле, можно сравнить бегущий на месте световой пузырь с тем, что происходит вокруг сливного отверстия во время вытекания воды из раковины: на поверхности воды могут распространяться волны, остающиеся на месте по отношению к раковине по причине движения воды в направлении стока.

Отметим еще один важный элемент структуры черной дыры. Временное развитие ее внутренней области ограничено, заканчиваясь на пространственно-временной границе (темно-серая поверхность), где деформация хроногеометрии (в смысле тензора кривизны) становится бесконечно большой. Пространство-время перестает существовать за этой границей, что должно обозначать явление Большого сжатия (или, что то же самое, обращенного во времени Большого взрыва). В нашей аналогии с упругой средой эта граница схожа с тем местом, где происходит разрыв упругого материала. Другими словами, внутренность черной дыры содержит ожидаемый «конец света», где рвется ткань пространства-времени.

Уточним, что кроме глобальной хроногеометрической структуры черной дыры также полезно рассматривать черную дыру в качестве объекта, локализованного в окружающем пространстве и сохраняющегося во времени: другими словами, как своего рода мертвую звезду, оставляющую след в виде трубы в пространстве-времени. Эта труба есть не что иное, как ее горизонт событий, или же поверхность черной дыры, представленная серым цилиндром на рисунке. Изучение физического поведения этого объекта показывает, что ему можно приписать большое количество свойств, присущих обыкновенным телам: как, например, масса, энергия, импульс и момент импульса23. Более того, оказывается, что черная дыра может обмениваться энергией, моментом импульса и электрическим зарядом со своим окружением. Димитриос Христодулу и Ремо Руффини сумели даже показать24, что черные дыры представляют наибольший резервуар свободной энергии Вселенной: в самом деле, 29% их энергии, сосредоточенной в массе (mc2), может иметь форму кинетической энергии вращения и до 50% — форму электрической энергии. Это куда больше тех нескольких процентов, которые приходятся на энергию ядерных связей и которые являются источником излучения света в течение всей жизни звезды. Вдобавок к их механическим свойствам (энергия, импульс и т.д.) также весьма полезно приписать черным дырам термодинамические свойства (такие как энтропия25 и температура26) и даже локальные диссипативные свойства на их поверхности (такие как удельная поверхностная проводимость27 и поверхностная вязкость28).

Хотя на данный момент нет неопровержимых доказательств существования черных дыр во Вселенной (несмотря на некоторые сообщения СМИ, которые в основном касаются явлений, происходящих очень далеко от горизонта событий потенциальной черной дыры), имеется большое количество косвенных свидетельств, указывающих на их существование. В частности, более дюжины двойных систем в нашей галактике, испускающих рентгеновское излучение, вероятно, в действительности состоят из пары: черная дыра и звезда. Более того, центр нашей галактики, по всей видимости, содержит очень компактное скопление массы, эквивалентное трем миллионам солнечных масс, что, вероятно, может быть черной дырой. Детектирование гравитационных волн, испущенных при слиянии черных дыр, в случае успеха принесет прямое и неопровержимое доказательство их существования путем анализа характерных частот «вибрационных» волн, испускаемых конечной дырой, образованной при слиянии двух начальных. В самом деле, можно показать, что черные дыры представляют собой упругие структуры, которые могут вибрировать и заставлять колебаться пространство-время вокруг них, подобно тому, как колокольчик своими колебаниями возбуждает звуковые волны в воздухе.


1 Левая сторона уравнения \( \textbf{D} = k \textbf{T} \) , предложенного 11 ноября, не давала окончательно правильный результат, поскольку \( \textbf{D}' \) есть тензор Риччи, а не тензор Эйнштейна, отличающийся от тензора Риччи дополнительным членом \( - (1/2) R \textbf{g} \). Эйнштейн напишет \( \textbf{D} \) в окончательном виде 25 ноября. В течение длительного времени считалось (и некоторые авторы книг, посвященных Эйнштейну, до сих пор продолжают так думать), что математик Гильберт понял 20 ноября, т. е. за пять дней до заключительной статьи Эйнштейна, необходимость дополнительного члена \( - (1/2) R \textbf{g} \) в уравнении, написанном 11 ноября Эйнштейном. Однако найденный недавно оригинал исправленных доказательств Гильберта показывает, что Гильберт глубоко изменил ход доказательств исходной версии своей статьи после прочтения окончательного результата Эйнштейна 25 ноября.

2 В обычном пространстве более прямые линии являются также более короткими. Но в пространстве-времени из-за знака минус, связанного с временным направлением, более прямые линии (в направлении «времени») оказываются более длинными.

3 Применяя формулировку, которую Эйнштейн использует в отношении новой идеи Луи де Бройля несколько лет спустя.

4 Заметим, кстати, что уже в июне 1905 г. Пуанкаре осознал, что вся «релятивистская» теория подразумевает распространение гравитации со скоростью света (это распространение он называл «гравитационными волнами»). Он также предсказал, что эти гравитационные волны должны вытягивать энергию из источника. В 1908 г. он предложил явление, связанное с этой потерей энергии, которое можно было наблюдать экспериментально: «ускорение» орбитального вращения планетарных систем. Примечательно, что именно благодаря этому эффекту (зафиксированному в двойном пульсаре PSR 1913+16 в 1980-х гг.) была подтверждена реальность существования гравитационных волн. Заметим между тем, что рассуждения Пуанкаре (связанные с более ранними идеями Лапласа и Лоренца) имели чисто качественный характер. В отличие от Эйнштейна, Пуанкаре никогда не предлагал специальной релятивистской теории гравитации. Ему не хватало необходимых инструментов, которыми для Эйнштейна послужили принцип эквивалентности и принцип общей относительности.

5 Поправка, полученная Лоренцом (из «преобразований Лоренца») и Дж. Дростом. Эквивалентный результат был позже получен другим методом (в 1938 г.) Эйнштейном, Л. Инфельдом и Б. Гофманом. Впоследствии этот метод оказался полезным при описании движения нейтронных звезд и черных дыр.

6 В работе Т. Дамура, подводящей итог серии предшествующих работ в сотрудничестве с Н. Дрюелем, а также с Л. Белем и Дж. Мартаном.

7 Георгий Гамов. Мистер Томпкинс исследует атом. Глава 3 (переиздание). — М.: УРСС, 2003.

8 Благодаря новым технологиям эти датчики должны обладать достаточной чувствительностью для обнаружения гравитационных волн уже в 2015 г.

9 Мы пренебрегаем здесь тем фактом, что волна деформации совершает колебания с относительно высокой частотой (порядка 100 Гц для источников, которые ищут LIGO и VIRGO).

10 Но только в отсутствии дополнительного члена, связанного с так называемой «космологической постоянной», которую Эйнштейн ввел в своей основополагающей статье по космологии в 1917 г. Кроме того, один из аргументов, использованных Эйнштейном для введения дополнительного члена, заключается в том, чтобы пространство-время Минковского не являлось решением в отсутствие материи.

11 Мы предпочитаем использовать термин «изогнутый во времени», нежели выражение расширяющийся (или сжимающийся), чтобы избежать неявного повторного введения временного потока. См. обсуждение ниже.

12 См. например: Джозеф Силк. Большой взрыв. — М.: Мир, 1982; Краткая история Вселенной (Une brève histoire de l’univers, Paris, Éditions Odile Jacob, 2003); Изобретение Большого взрыва (Jean-Pierre Luminet, L’Invention du Big Bang, Paris, Éditions du Seuil (1997)); Темная энергия, темная материя (Michel Cassé, Énergie noire, matière noire, Paris, Éditions Odile Jacob, 2004).

13 В частности, здесь идет речь об открытии ускорения расширения Вселенной в результате наблюдения далеких сверхновых. За это открытие Солу Перлмуттеру, Адаму Рису и Брайану Шмидту была присуждена Нобелевская премия по физике 2011 г.

14 Большим сжатием называется «верхняя граница» пространства-времени относительно общепринятой конвенции, в которой Большой взрыв в обычном смысле считается «нижней границей» пространства-времени. Другими словами, если (мысленно) разделить пространство-время на слои с использованием «космического времени», измеряющего высоту над Большим взрывом (т. е. космическое время, равное нулю в момент Большого взрыва и некоторой положительной величине в той части пространства-времени, где мы находимся), то Большое сжатие является временно́й противоположностью Большого взрыва.

15 Иными словами, возможно. Обратите внимание, что «возможно» не означает «вероятно», даже если в квантовой теории «все, что возможно, — обязательно», т. е. реализуется с некоторой амплитудой существования (обычно называемой амплитудой вероятности), отличной от нуля. Весь опыт указывает на то, что доступная для нас часть пространства-времени находится в состоянии, предпочитающем особую временную ориентацию, что отражается во временном расслоении большого количества структур (космологических, астрофизических, электромагнитных, термодинамических...).

16 Не следует путать временну́ю ориентацию (или стрелу времени) с временны́м потоком. Например, блок желе, скажем, из-за оседания при охлаждении некоторых формирующих его компонентов, может быть расслоен, а именно может быть плотнее «внизу» и менее плотным «наверху» (с непрерывным изменением плотности снизу вверх). Такой блок желе будет иметь привилегированную пространственную ориентацию (снизу вверх). Но это «привилегированное направление» не означает, что что-то движется снизу вверх. Аналогично, наше пространство не является однородным, а скорее, расслоенным. Привилегированные слои обладают «пространственной ориентацией», т.е. расположены вдоль положительных квадратов интервала, но ничего не соответствует идее «слоя данного момента», который бы «перемещался» в направлении будущего, словно прожектор, освещающий последовательно «слои постоянной плотности» пространства-времени.

17 Здесь предполагается, что термодинамическая стрела времени (т. е. направление времени, в котором энтропия увеличивается) есть то, что определяет ощущение «течения времени» как результат необратимости процесса запоминания в нейронных структурах, связанных с феноменом сознания. В космологической модели рассматриваемого типа термодинамическая стрела времени не будет определена в некоторых областях переходов, где энтропия переходит максимумы. Для недавнего обсуждения различных (математических, физических, философских...) аспектов Времени см. семинар Пуанкаре от 4 и 18 декабря 2010 г. (www.bourbaphy.fr).

18 Здесь анализируется деформация «пространственной геометрии», т. е. геометрии пространственно-временного слоя, рассматриваемого в данный момент времени.

19 Для введения в исследования режима сильных гравитационных полей, полученных на основании наблюдений бинарных пульсаров, см. раздел 6.9 главы 6 «Общая теория относительности» в недавно вышедшем сборнике «Эйнштейн сегодня» (см. Избранную библиографию).

20 Мы предполагаем здесь, что типичные особенности пространства-времени локально похожи на космологическую сингулярность (т.е. распространяются либо вдоль «пространственнообразной» гиперповерхности, либо строго вдоль «светообразной» гиперповерхности). Эта (упрощенная) гипотеза подтверждается некоторыми результатами, но, по сути, в рамках неквантовой общей теории относительности остается недоказанным предположением.

21 Для введения в астрофизику черных дыр и их истории см.: Жан-Пьер Люмине. Черные дыры (Jean-Pierre Luminet, Les Trous noirs, Paris, Éditions du Seuil, 1992); Жан Эйзенштадт. Эйнштейн и общая теория относительности (Jean Eisenstaedt, Einstein et la relativité générale, Paris, CNRS Éditions, 2002); Вернер Израиль. Темные звезды: эволюция идеи (Werner Israel, Dark Stars: The Evolution of an Idea, dans 300 Years of Gravitation, édité par S. W. Hawking et W. Israel, Cambridge, Cambridge University Press, 1987).

22 Математически представленная на этой диаграмме хроногеометрия (за пределами коллапсирующей звезды) есть хроногеометрия черной дыры Шварцшильда, что соответствует решению уравнений Эйнштейна, полученному Карлом Шварцшильдом и Йоханнесом Дростом в 1916 г. Для тех, кому интересно, вот математическая форма инфинитезимального квадрата интервала этой хроногеометрии: \( ds^2 = -Aс^2dt^2 + dr^2 / А + r^2 (da^2 + (\sin a)^2 (db)^2), \) где r — радиальная координата, \( A = 1 - 2GM/(c^2r) \) и где a обозначает широту (рассчитанную от северного полюса), а b — долготу на сфере направлений. [Эти углы обычно обозначаются греческими буквами theta и phi, однако из-за серьезных (связанных с системой обработки текстов) проблем совместимости компьютеров, которые одному американскому компьютерному магнату удалось создать для многих, в том числе для французских издателей, мы стараемся свести к минимуму использование греческих букв.] Горизонт черной дыры Шварцшильда (вне звезды) является «цилиндром», имеющим «радиус» \( r = 2GM / c^2 \).

23 Энергия, импульс и момент импульса изолированной черной дыры определяются формализмом, введенным Ричардом Арновиттом, Стэнли Дезером и Чарльзом Миснером.

24 В работе, датируемой 1971 г., в которой они показали существование фундаментальной необратимости в физике черных дыр.

25 Понятие энтропии черной дыры было введено Яковом Бекенштейном в 1973 г.

26 Понятие температуры черной дыры было введено Стивеном Хокингом в 1974 г. в расчете, где он обнаружил замечательное явление «квантового испарения» черной дыры.

27 Понятие поверхностного сопротивления черной дыры было введено независимо Тибо Дамуром и Романом Знаеком в 1978 г.

28 Понятие поверхностной вязкости черной дыры было введено Тибо Дамуром в 1979 г.


1
Показать комментарии (1)
Свернуть комментарии (1)

  • Madao  | 06.12.2016 | 10:16 Ответить
    Уравнения кое-где перекосило
    \( \textbf{D}(\textbf{g}) = k\textbf{T} \)
    Ответить
Написать комментарий