Мэтт Ридли

«Секс и эволюция человеческой природы». Глава из книги

Глава 3. Власть паразитов

Мир — шахматная доска; природные явления — фигуры;
то, что мы называем законами природы, — правила игры.
Наш оппонент скрыт от нас. Мы знаем, что он всегда играет
честно, беспристрастно и терпеливо. А еще мы знаем,
что он никогда не прощает ошибок и никогда не зевает.

Томас Генри Хаксли (Thomas Henry Huxley),
«Образование без предрассудков»
(A Liberal Education)

Бделлоидные коловратки — нечто выдающееся даже среди микроскопических животных. Они живут везде, где есть пресная вода — от лужи в вашем водостоке до горячих источников у Мертвого моря и временных озер Антарктики. Они выглядят как живые запятые, катающиеся на маленьких турбинах, приделанных спереди их тел. А когда приютивший их водоем высыхает или замерзает, они образуют маленькую «кавычку» и засыпают. Эти «кавычки» (цисты) — самые настоящие коловраткоубежища, удивительно устойчивые к воздействиям окружающей среды. Их можно кипятить или замораживать почти до абсолютного нуля на целый час, и они останутся живы. Эти цисты носятся по миру в виде пыли и, похоже, регулярно путешествуют из Африки в Америку и обратно. Как только жизнь улучшается, циста тут же снова превращается в коловратку, которая принимается рассекать по луже на своей турбине, попутно поедая бактерии, а через несколько часов откладывает яйца, из которых вырастают другие коловратки. В результате всего за пару месяцев она может заполнить своим потомством среднего размера озеро.

Но, помимо продвинутости бделлоидных коловраток в вопросах устойчивости и плодовитости, у них есть еще одна странная особенность. Никто никогда не видел их самцов. Насколько известно биологам, каждая отдельная особь каждого из пяти сотен видов бделлоидных коловраток — самка. Так что скрещивание — не в их репертуаре.

Возможно, эти животные смешивают чужие гены со своими, поедая мертвых товарищей и абсорбируя некоторые их гены. Однако недавнее исследование Мэттью Мезельсона и Дэвида Уэлша (David Welsh) дает повод считать, что у них вообще не бывает полового размножения. Ученые обнаружили, что в участках, не влияющих на генную функцию, один и тот же ген у двух разных индивидов может отличаться на 30% — это уровень различий, предполагающий, что бделлоиды отказались от полового размножения где-то между 40 и 80 миллионами лет назад.

Есть много видов, у которых никогда не бывает полового размножения — от одуванчиков и ящериц до бактерий и амеб. Но бделлоиды — единственный в этой связи пример целого отряда животных. Возможно, из-за этого бделлоиды так друг на друга и похожи, хотя их родственники — моногононтные коловратки — демонстрируют собой все разнообразие знаков препинания. В общем, бделлоиды — это живой упрек общепринятым в биологии книжным представлениям, согласно которым, без полового размножения эволюция едва ли происходит, а вид не может адаптироваться к изменениям окружающей среды. Существование бделлоидных коловраток — это, говоря словами Джона Мэйнарда Смита, «эволюционный скандал».

Искусство немножко отличаться

Если только при клонировании не случится генетической ошибки, потомок бделлоидной коловратки будет идентичен своей матери. Человеческий же детеныш не идентичен своим родителям — это очевидное следствие полового размножения. По мнению многих экологов, главный смысл последнего — именно в создании различий.

В 1966 году Джордж Уильямс вскрыл логическую ошибку, лежащую в основе наиболее распространенного на тот момент объяснения полового размножения: оно требовало, чтобы особи игнорировали свои кратковременные эгоистичные интересы во имя дальнейшего выживания и эволюции всего вида. Такая форма самоотречения могла бы возникнуть только в очень специфических обстоятельствах. Уильямс не смог предложить другого объяснения вместо развенчанного, но заметил, что половое размножение и расселение обычно сопряжены. Для заселения ближайшей окружающей местности бесполым путем, трава пускает усы. Но для более широкого распространения она вверяет ветру семена, произведенные половым путем. У половых форм тли вырастают крылья, у бесполых — нет. Немедленно возникает ассоциация: если ваши дети собираются ехать за границу, то они там лучше устроятся, если каждый из них будет немного отличаться от вас, потому что там все может оказаться иначе, чем дома.

На протяжении 1970-х данную идею разрабатывали в основном экологи. В 1971 году, впервые взявшись за эту проблему, Джон Мэйнард Смит предположил, что половое размножение необходимо, когда два разных организма мигрируют в новую среду обитания, в которой их особенности лучше объединить. Через два года Уильямс тоже вернулся к этой теме и выдвинул гипотезу, что если основная часть молоди все равно умирает (как это происходит с большинством путешественников), то выживают только самые приспособленные. Поэтому не важно, сколько у организма молоди среднестатистического качества — важно, чтобы какая-то ее часть была исключительно хорошо приспособлена. Если вы хотите, чтобы ваш сын стал папой римским, самый лучший способ добиться этого — иметь много разных детей и надеяться, что один из них окажется достаточно добрым, умным и религиозным.

Простая аналогия — лотерея. Размножаться бесполо — все равно что купить много лотерейных билетов с одним и тем же номером. Чтобы иметь шанс выиграть в лотерее, нужно много разных билетов. Поэтому половое размножение необходимо индивиду так же, как и виду — если потомство собирается столкнуться с измененными или необычными условиями обитания.

Уильямса особенно заинтересовали организмы вроде тлей и моногононтных коловраток, у которых половое размножение случается всего один раз на несколько поколений. Тли делают это летом на розовом кусте, а моногононтные коловратки — в уличных лужах. Но когда лето заканчивается, последнее поколение тлей и моногононтных коловраток поголовно размножается половым путем: самцы и самки разыскивают друг друга, спариваются и производят крепких потомков, которые проведут зиму или засуху в твердых цистах — в ожидании возвращения лучших условий. Уильямсу это напоминало ту самую лотерею. Пока условия хороши и предсказуемы, стоит размножаться как можно быстрее — бесполо. Когда же маленький мирок переживает маленький конец света и очередное поколение тлей или коловраток сталкивается с неопределенностью, оказывается выгодным произвести много разнообразных потомков — в надежде, что хотя бы один из них окажется хорошо приспособленным к новым условиям.

Уильямс противопоставлял «тле-коловраточную» модель двум другим — «клубнично-коралловой» и «вязо-устричной». Клубника и животные, строящие коралловые рифы, всю жизнь сидят на одном месте и пускают вокруг себя усы или коралловые отростки — так организм и его копии постепенно распространяются в окружающем пространстве. Но когда они хотят выселить свое потомство гораздо дальше — чтобы найти новое, нетронутое местообитание, — клубника половым путем образует семена, а кораллы таким же образом образуют личинок, которые называются планулами. Первые разносятся птицами, а вторые дрейфуют много дней в океанических течениях. Уильямс видел в этом «пространственную» версию лотереи: те, кто путешествует дальше всех, с наибольшей вероятностью встретят другие условия, поэтому выгодно производить генетически разнообразных потомков — чтобы одному или нескольким из них новые условия подошли. Вязы и устрицы, размножающиеся половым путем, производят миллионы крохотных потомков, которые дрейфуют в потоках воздуха или в океанических течениях, пока нескольким из них не посчастливится оказаться в подходящем месте и начать новую жизнь. Почему они это делают? Потому, сказал Уильямс, что и вязы, и устрицы уже перенаселили места своего обитания. На устричной отмели — всего несколько проплешин, в вязнике — всего несколько просветов. На каждую вакансию придут многие тысячи кандидатов — в виде новых личинок и семян. Поэтому их потомству мало просто выжить. Важно, является ли оно лучшим из лучших. Половой процесс порождает разнообразие и делает нескольких потомков исключительными, а нескольких — безнадежными, то время как бесполое размножение делает их всех одинаковыми.

Заросший берег

Гипотеза Уильямса появлялась в последние годы в самых разных обличьях, под многими именами и с разными хитрыми модификациями. Однако математические модели показали, что «лотерея» работает, только если приз — настоящий джекпот. Учитывая двойное преимущество бесполых форм, половое размножение выгодно лишь тогда, когда несколько выживших путешественников действительно устраиваются очень хорошо. Иначе оно не окупается.

Из-за этого ограничения и из-за не особого стремления молоди большинства видов к миграции, лишь немногие экологи полностью приняли «лотерейные теории». А окончательно эти построения рухнули, когда Грэхэм Белл захотел получить реальное свидетельство существования ситуации, в которой они работают. Белл решил каталогизировать виды согласно их экологии и склонности к половому размножению и попытался обнаружить предполагаемую Уильямсом и Мэйнардом — Смитом связь между экологической нестабильностью и наличием полового размножения. Он ожидал, что животные и растения будут чаще размножаться половым путем в высоких широтах и на большой высоте (где погода разнообразнее, а условия — тяжелее), в пресной воде, а не в морской (потому что первая все время меняется, прибывает, высыхает, прогревается летом, замерзает зимой и так далее, а условия в море более стабильны), у сорняков нарушенных местообитаний, у маленьких организмов, а не у больших. Но обнаружил ровно обратную картину. Представители бесполых видов обычно маленькие и живут в высоких широтах, на большой высоте, в пресной воде или в нарушенных местообитаниях. Еще они живут в недозаселенных местообитаниях, суровые и непредсказуемые условия которых не позволяют популяциям достичь высокой численности. Даже ассоциация между половым размножением и ухудшением условий у тлей и коловраток оказалось мифом. Эти существа превращаются в половых особей не с приближением зимы или засухи, а в тот момент, когда перенаселение начинает влиять на количество пищевых ресурсов. Возникновение половых форм можно стимулировать в лаборатории — устроив в популяции перенаселение.

Белл вынес «лотерейной модели» уничтожающий вердикт: принятая, по крайней мере, как концептуальное основание, лучшими умами, пытавшимися понять роль полового размножения, она полностью провалила проверку сравнительным анализом.

«Лотерейные модели» предсказывают максимальное распространение полового размножения у мелких плодовитых организмов в изменчивых условиях среды — у тех, у кого оно в действительности встречается исключительно редко. А вот у больших, долгоживущих и медленно размножающихся организмов, обитающих в стабильных условиях, оно — как раз правило.

Этот вердикт немного несправедлив по отношению к Уильямсу. По крайней мере, его «вязо-устричная» модель соответствовала действительности, предсказывая, что благодаря жесткой конкуренции между молодью за жизненное пространство вяз должен размножаться половым путем. В 1974 году Майкл Гизелин (как мы помним, пытавшийся выявить преимущества половых форм над бесполыми), развивая свою идею, привел несколько ярких аналогий между экологией и экономикой: «в насыщенной экономике востребовано разнообразие». Он считал, что, поскольку большинство организмов конкурируют со своими собратьями, то потомков будет выживать больше, если все сибсы станут немного отличаться друг от друга. Если ваши родители нашли для себя идеальное местообитание, то потомству имеет смысл отправиться на поиск новых условий, ибо старое место может быть уже заселено товарищами или родственниками родителей.

Грэхэм Белл назвал это «теорией заросшего берега», взяв название из знаменитого последнего параграфа дарвиновского «Происхождения видов»:

«Любопытно созерцать густо заросший берег, покрытый многочисленными, разнообразными растениями, с поющими в кустах птицами, порхающими вокруг насекомыми, ползающими в сырой земле червями, и думать, что все эти прекрасно построенные формы, столь отличающиеся одна от другой и так сложно одна от другой зависящие, были созданы благодаря законам, еще и теперь действующим вокруг нас».

В качестве аналогии Белл привел мастера-пуговичника, у которого нет конкурентов, и который уже насытил пуговицами большую часть местного рынка. Что он будет делать? Либо продолжать продавать пуговицы на замену, либо попробует расширить рынок, сделав свою продукцию разнообразнее и призывая клиентов покупать новые модели. Точно так же половые формы в перенаселенных местообитаниях: вместо штампования одинаковых потомков они немного разнообразят их в надежде, что дети избегут конкуренции путем адаптации к новой нише. Свой всеохватный обзор полового и бесполого размножения у животных Белл завершил тем, что назвал «теорию заросшего берега» наиболее многообещающей из всех экологических, объясняющих половое размножение.

Ее приверженцы имеют косвенное свидетельство в свою пользу: речь идет о технологии выращивания пшеницы и ячменя. При пересадке на новое место обычно лучше скрещивать несколько разных сортов, чем брать только один: пересаженные сортовые линии чаще всего там растут хуже, чем на прежнем участке — они как бы генетически более приспособлены к «родной» грядке. В конкуренции на новом месте они, размножающиеся бесполо (отводками или отростками), растут в целом хуже, чем растения из гибридных семян, полученных половым путем, который дает что-то вроде преимущества в вариабельности.

Смех в том, что одни и те же явления можно объяснить конкурирующими теориями. Уильямс написал: «Мы будем благодарить судьбу, если какое-нибудь предсказание нашей теории не совпадет с предсказанием другой». Эта проблема стоит в дебатах очень остро. Один исследователь приводит в качестве ее аналогии человека, пытающегося понять, почему дорожка около его дома мокрая — из-за дождя, из-за поливальной установки или из-за разлива местной реки. Не имеет смысла включать поливальную установку и смотреть, намочит ли она дорожку; не имеет смысла смотреть, как дорожку мочит дождь. Делающий какие-то выводы из подобных наблюдений попадает в ловушку, которую философы называют «ошибкой вычленения следствия». То, что поливальные установки могут намочить дорожку, не означает, что именно они ее и намочили. То, что «теория заросшего берега» не противоречит фактам, не доказывает, что эти факты проистекли именно из нее.

Сегодня трудно найти настоящих приверженцев «теории заросшего берега». Основная ее проблема нам уже знакома: если не сломано, зачем чинить? Устрица, которая выросла достаточно большой и уже размножается, по устричным меркам, очень успешна. Большинство ее сибсов мертво. Если причина этого успеха — хорошие гены, то почему мы полагаем, что их комбинация, победившая в текущем поколении, будет провальной в следующем? Приверженцы этой теории выкручиваются, придумывают, как обойти этот вопрос, но их аргументы похожи на оправдания. Легко найти отдельный случай, в котором половое размножение дало бы некоторое преимущество с помощью механизмов, предполагаемых «теорией заросшего берега». Но обоснованно возвести это в общий принцип для каждого местообитания каждого млекопитающего и птицы, каждого хвойного дерева, в принцип, который давал бы настолько большое преимущество, чтобы оно преодолевало вдвое большую плодовитость бесполых форм, пока никто не смог.

Есть против «теории заросшего берега» и более приземленное возражение. Из нее следует, что у животных и растений, имеющих много маленьких конкурирующих друг с другом потомков, половое размножение должно быть распространено шире, чем у растений и животных, у которых потомства мало, и оно крупное. В действительности, одно с другим, на первый взгляд, не связано. У голубых китов — самых больших животных — потомство огромное, каждый отпрыск может весить по пять тонн и даже больше. У гигантских секвой — самых больших растений — семена настолько маленькие, что отношение массы семени к массе дерева такое же, как отношение массы дерева к массе Земли. И кит, и секвойя размножаются половым путем. Для сравнения, у амебы, которая размножается делением, молодь имеет просто гигантские размеры — в половину родительской клетки. Но у нее никогда не бывает полового размножения.

Остин Берт (Austin Burt) — ученик Грэхэма Белла — решил проверить, соответствует ли «теория заросшего берега» фактам. Он смотрел не на наличие у животных возможности полового размножения, а на интенсивность рекомбинации родительских генов. И измерил это довольно легко — путем подсчета числа кроссинговеров1 на хромосоме. Там, где одна обменивается генами с другой, видны характерные пятна. Берт обнаружил, что у млекопитающих количество рекомбинаций не связано с числом потомков, мало связано с размером тела и сильно связано с возрастом, в котором наступает половое созревание. Другими словами, долгоживущее, поздно созревающее животное, безотносительно размера и плодовитости, будет перемешивать свои гены лучше, чем короткоживущее и рано начинающее спариваться. По расчетам Берта, у человека происходит 30 кроссинговеров, у кролика — 10, у мыши — 3. «Теория заросшего берега» предсказывает обратное.

Кроме того, она противоречит ископаемым свидетельствам. В 1970-х эволюционные биологи выяснили, что виды преображаются довольно мало. Они могут оставаться неизменными в течение тысяч поколений, а потом неожиданно вытесняться какими-нибудь новыми жизненными формами. «Теория заросшего берега» не предполагает длительных периодов стабильности на протяжении миллионов поколений — напротив, она предсказывает постепенное изменение признаков и накопление небольших отклонений в каждом последующем. Плавный дрейф признаков вида действительно может происходить — но только на маленьких островах или в небольших популяциях. Дело здесь в эффекте, аналогичном действию храповика Мюллера: вымирание одних и выживание других, мутировавших, форм происходит случайным образом. В больших популяциях этому препятствует половое размножение, благодаря которому любое отклонение от нормы сразу же «растворяется в толпе». И только в маленьких островных популяциях, где очень высок уровень инбридинга, половой процесс не способен препятствовать дрейфу.

Именно Уильямс первым обнаружил неверный посыл, до сих пор лежащий в основе большинства популярных представлений об эволюции. Речь идет о старой концепции лестницы прогресса, которая все еще присутствует в эволюционной биологии в форме телеологических представлений: эволюция приносит пользу виду, поэтому отдельные особи стараются ее ускорить. Но главный атрибут эволюции — это не изменение, а стазис. Половое размножение, генная репарация, имеющиеся у высших животных сложные механизмы проверки дефективности яйцеклеток и сперматозоидов — это все способы предотвращения изменений. Триумф эволюции — не человек, а целакант, потому что он не менялся многие миллионы поколений, несмотря на бесконечные атаки на вещество, несущее его наследственную информацию. Если бы была верна старая модель «викария из Брэя», согласно которой половое размножение — это способ ускорить эволюцию, то было бы выгодно иметь достаточно высокий уровень мутаций, ведь именно они являются источником вариабельности. Но, как сказал Уильямс, все, что мы знаем о живых организмах, однозначно говорит: они пытаются сделать уровень мутаций настолько низким, насколько это возможно. Все стремятся к нулевому их уровню. Эволюция идет лишь потому, что им это не удается.

«Теория заросшего берега», согласно математическим расчетам, работает только тогда, когда отличаться от других очень выгодно. Это возможно, если полезное в одном поколении окажется вредным в другом, если временная разница между поколениями увеличивает этот разрыв в полезности. Все это возможно только в меняющихся условиях окружающей среды.

Черная королева

И тут появляется Черная Королева. Эта августейшая особа становится частью биологической теории с середины 1970-х, и с тех пор ее важность только возрастает. Проследуйте вместе со мной — если, конечно, осмелитесь — в темный лабиринт нависающих полок, разместившийся где-то в недрах Чикагского университета. Минуйте зиккураты балансирующих книг и метровые столпы бумаг. Теперь протиснитесь меж двух шкафов для документов, и вы окажетесь в сумрачном пространстве размером с кладовку для уборочного инвентаря. Еще совсем недавно здесь сидел престарелый мужчина в клетчатой рубашке и с седой бородой — длиннее, чем у Бога, но короче, чем у Дарвина. Это первый пророк Черной Королевы — Ли ван Вален (Leigh Van Valen), преданный своему делу эволюционист. Однажды в 1973 году, когда его борода еще не была столь седой, он напрягал свой могучий ум, пытаясь подобрать аналогию, которая помогла бы ему сформулировать новое открытие, сделанное во время изучения морских ископаемых. Оно состояло в том, что вероятность вымирания группы животных не зависит от продолжительности ее существования. Иными словами, вид не может натренироваться в выживании (но и не дряхлеет, в отличие от отдельных индивидов). Его шансы на вымирание неопределенны.

Важность этого открытия не ускользнула от ван Валена: оно раскрывало насущную правду об эволюции, которую Дарвин полностью не осознавал. Борьба за существование никогда не ослабевает. Как бы хорошо вид ни адаптировался к своему окружению, он никогда не может расслабиться, ибо его соперники тоже меняются. Выживание — это игра с нулевой суммой. Успех делает один вид всего лишь более соблазнительной мишенью для другого. Разум ван Валена обратился к его детству и наткнулся на живые шахматные фигуры, встреченные Алисой в Зазеркалье. Черная Королева — грозная женщина, бегущая быстрее ветра, но никогда никуда не попадающая:

— У нас, — сказала Алиса, с трудом переводя дух, — когда долго бежишь со всех ног, непременно попадешь в другое место.
— Какая медлительная страна! — сказала Королева. — Ну, а здесь, знаешь ли, приходится бежать со всех ног, чтобы только остаться на том же месте! Если же хочешь попасть в другое место, тогда нужно бежать, по меньшей мере, вдвое быстрее!

«Новый эволюционный закон» — написал ван Вален и отправил манускрипт, во все — один за другим — самые престижные научные журналы. И везде получил отказ. Но в итоге его открытие получило всеобщее признание. Черная Королева стала важной персоной при биологическом дворе. И нигде не заняла позицию сильнее, чем в гипотезах, объясняющих половое размножение.

Теория Черной Королевы утверждает, что мир наполнен смертельной борьбой. Он все время меняется. Но мы ведь только что слышали: виды не меняются в течение многих поколений. Это так. Фокус с Черной Королевой в том, что она бежит, но всегда остается на одном и том же месте. Мир все время возвращается туда, откуда он начал: изменение есть, прогресса — нет.

Возникновение полового размножения, согласно теории Черной Королевы — это не адаптация к каким-либо абиотическим2 условиям, вроде увеличения размеров тела, защитной окраски, устойчивости к холоду или способности к полету. Это — адаптация к борьбе с врагом, который всегда даст сдачи.

Биологи постоянно переоценивают важность физиологических причин смерти до полового созревания, по сравнению с биологическими. Засуха, мороз, ветер или голод кажутся нам лютыми врагами. Страшная борьба за существование, говорят нам, состоит в том, чтобы адаптироваться к этим тяжелым условиям. Чудеса физической адаптации — верблюжий горб, шерсть белого медведя, устойчивые к кипячению цисты коловраток — считаются величайшими достижениями эволюции. Первые экологические теории полового размножения все были направлены на объяснение такой адаптированности к физическим условиям окружающей среды. Но, начиная с «теории заросшего берега», зазвучала другая тема (позже, в марше Черной Королевы, ставшая главной). Очень редко бывает так, что именно физические факторы убивают животных или не дают им размножаться. Гораздо чаще костью в горле становятся другие живые организмы — паразиты, хищники и конкуренты. Дафния, голодающая в перенаселенном пруду — жертва не нехватки еды, а конкуренции. Хищники и паразиты, возможно, прямо или косвенно вызывают большую часть смертей в мире. Когда в лесу падает дерево, оно, обычно, уже ослаблено грибами. Селедка встречает свою смерть во рту другой рыбы или в сетке. Что убивало наших предков два века назад? Оспа, туберкулез, грипп, пневмония, чума, скарлатина, диарея. Голод или несчастные случаи могли ослабить людей, но убивала их инфекция. Немногие наиболее состоятельные люди умирали в зрелом возрасте от рака или от сердечного приступа, но это были единицы.

Первая мировая война унесла жизни 25 миллионов человек за четыре года. Последовавшая затем эпидемия гриппа убила столько же людей за четыре месяца. То была последняя из серии чудовищных эпидемий, бушевавших от зари цивилизации. Корь опустошила Европу в 165-м году, чума — в 251-м, бубонная чума — в 1348-м, сифилис — после 1492-го, туберкулез — после 1800-го. И это — просто эпидемии. Эндемические заболевания тоже унесли жизни фантастического количества людей. Растения находятся под постоянной атакой насекомых, животные окружены массой голодных бактерий, которые только и ждут открытого пути в организм. В объекте, который мы с гордостью называем «своим» телом, бактериальных клеток, возможно, больше, чем человеческих. Пока вы читаете эти строки, в и на вас может находиться больше бактерий, чем людей на Земле.

В последние годы эволюционные биологи вновь и вновь возвращаются к теме паразитов. В своей недавней работе Ричард Докинз пишет:

Подслушайте-ка разговоры за утренним кофе в любом крупном эволюционно-биологическом исследовательском центре. Вы обнаружите, что слово «паразит» в местном языке — одно из самых распространенных. Их считают главными движителями эволюции полового размножения, обещающими окончательное решение этого вопроса вопросов.

Паразиты страшнее хищников по двум причинам. Первая: их больше. «Над» людьми нет хищников, за исключением белой акулы и других людей. Но зато у нас много паразитов. Даже у кроликов, которых едят горностаи, ласки, лисы, канюки, собаки и люди, паразитов гораздо больше, чем «больших» врагов: блохи, вши, клещи, комары, ленточные черви и несметное количество простейших, бактерий, грибов и вирусов. Например, вирус миксоматоза убил гораздо больше кроликов, чем лисы. Вторая причина, из которой вырастает первая: паразиты обычно меньше своих хозяев, а хищники — обычно больше. Это значит, что жизнь первых короче и за одно и то же время у них сменяется больше поколений, чем у их хозяина. За вашу жизнь в вашем кишечнике друг друга сменяет больше поколений бактерий, чем люди прожили с тех пор, как произошли от обезьян3. Паразиты могут размножаться быстрее хозяина, а также регулировать (уменьшать) свою численность. А хищник всего лишь следует туда, где много потенциальных жертв.

Паразиты и их хозяева слились в крепком эволюционном объятии. Чем успешнее нападают первые (чем больше хозяев он заразит или чем больше ресурсов он получит от них), тем в большей степени шансы вторых на выживание зависят от того, смогут ли они придумать хорошую защиту от паразита. Чем лучше хозяин обороняется, тем жестче естественный отбор у паразитов, у которых постепенно получается преодолеть защиту. Так что преимущество всегда переходит от одного к другому: чем страшнее ситуация для любой из сторон, тем яростнее она будет сражаться. Это самый настоящий мир Черной Королевы, в котором вы никогда не победите, а можете рассчитывать только на временную передышку.

Кто кого перехитрит

Мир полового размножения переменчив. Из-за наличия паразитов хозяину выгодно в каждом поколении генетически изменяться — делать именно то, к чему оно и приводит. Успешность генных комбинаций, защитивших родителей от паразитов — главная причина для их потомства избегать таких же. К тому времени, когда подходит очередь следующего поколения, паразиты, несомненно, уже успевают придумать ответ на еще недавно успешно работавшую защиту. Это похоже на спорт. В шахматах или в футболе против любой новой тактики, какой бы эффективной она ни была, вскоре находится противоядие. Любая инновация в способах защиты вскоре встречает инновацию в атаке.

А самая избитая аналогия — естественно, гонка вооружений. Америка делает атомную бомбу, Россия — тоже. Америка делает ракеты — должна и Россия. Танк за танком, вертолет за вертолетом, бомбардировщик за бомбардировщиком, подлодка за подлодкой — две державы бегут наперегонки, но остаются на одном и том же месте. Оружие, которое было бы непобедимо 20 лет назад, сейчас — просто старый хлам. Чем сильнее вырывается вперед одна сторона, тем стремительнее другая пытается ее настичь. И никто не решается сойти с дистанции, пока может себе позволить гонку. Последняя прекратилась (или временно остановилась), только когда обрушилась российская экономика.

Эту аналогию не нужно принимать слишком серьезно, но она позволяет сделать некоторые довольно интересные умозаключения. Ричард Докинз и Джон Кребс (John Krebs) возвели один такой момент, обнаруженный благодаря аналогии с гонкой вооружений, в ранг «принципа» и назвали его «Жизнь или обед». Кролик, убегающий от лисы, спасает свою жизнь. Причем, для него это эволюционно важнее, чем для лисы его догнать. Цена вопроса для последней — всего лишь обед. А как насчет газели, убегающей от гепарда? Если лисы и едят других животных, помимо кроликов, то гепарды едят только газелей. Поэтому если он будет медленно бегать, то никогда никого не поймает и умрет. Зато медленной газели может так повезти, что она никогда не встретит гепарда. Соответственно, в этой истории цена вопроса больше для гепарда, чем для газели. Докинз и Кребс сформулировали обобщение: в гонке обычно побеждает специалист4.

Паразиты — фантастические специалисты, но для них эта аналогия подходит в меньшей степени. У блохи, живущей в ухе гепарда, имеется с ним, как говорят экономисты, «совпадение интересов»: если он умрет, блоха тоже умрет. Гэри Ларсон (Gary Larson) однажды нарисовал мультфильм о блохе, гуляющей по собачьей спине между шерстин и несущей плакат с надписью: «Близится конец собаки». Смерть собаки для блохи — конец света, даже если она сама его ускорила. Вопрос о том, хорошо ли паразитам от того, что они причиняют вред своим хозяевам, мучил паразитологов многие годы. Впервые нападая на нового хозяина (миксоматоз у европейского кролика, СПИД у человека, чума у европейцев XIV века), паразит обычно чрезвычайно смертоносен, но потом он постепенно «успокаивается». Одни заболевания остаются фатальными, другие вскоре становятся почти безопасными. Объяснение этому простое: чем меньше устойчивых к паразиту хозяев, тем легче ему найти и заразить новых. Поэтому заразным паразитам в популяциях с низкой к ним устойчивостью не нужно беспокоиться о смерти хозяина: они успеют перепрыгнуть на другого. Но когда большинство потенциальных хозяев уже заражено или устойчиво, и становится трудно найти нового, паразит перестает убивать того, кто его кормит. Точно так же владелец завода, умоляющий своих рабочих: «Пожалуйста, не бастуйте, а то компания разорится», будет звучать более убедительно, если уровень безработицы в регионе высок, и менее — если у людей уже есть приглашения на другие вакансии. Тем не менее, даже когда смертоносность падает, хозяин все еще продолжает страдать от паразита и все еще пытается улучшить свою защиту. А паразит, в свою очередь, постоянно пытается обойти последнюю и получить большую квоту на хозяйские ресурсы.

Искусственные вирусы

Удивительное подтверждение того, что паразиты и хозяева сцепились в эволюционной гонке вооружений, пришло с неожиданной стороны — из компьютерных симуляций. В конце 1980-х эволюционные биологи обнаружили, что благодаря усилиям их наиболее компьютерно продвинутых коллег возникла новая научная дисциплина — наука об искусственной жизни. Последняя — это собирательное название компьютерных программ, которые могут эволюционировать путем репликации, конкуренции и отбора, подобно настоящим живым организмам. Эти программы в некотором смысле окончательное подтверждают, что жизнь — это вопрос информации. Сложность может возникнуть из ненаправленной конкуренции, а структура — из хаоса.

Если жизнь — это информация, и если все живое изъедено паразитами, то и информация тоже должна быть уязвима для них. Когда кто-нибудь напишет историю компьютеров, то, возможно, программой, которой будет присвоено звание первой искусственной жизни, станет простенькая на вид 200-строчная программка, написанная в 1983 году аспирантом Калифорнийского института Технологии Фредом Коэном (Fred Cohen). Это был «вирус», который постепенно внедрял свои собственные копии в новых хозяев. С тех пор компьютерные вирусы стали общемировой проблемой. Похоже, наличие паразитов неизбежно в любой живой системе.

Однако вирус Коэна и его неприятные наследники создавались людьми. Так это и продолжалось, пока Томас Рэй (Thomas Ray), биолог из университета Делавэра, не ощутил интерес к искусственной жизни, и компьютерные паразиты, наконец, не научились возникать самостоятельно. Он создал систему под названием «Тьерра». Она состояла из конкурирующих программ, в которые постоянно вводились мутации — небольшие ошибки. И успешные программы процветали за счет остальных.

Результат оказался потрясающим. Программы начали эволюционировать в более короткие версии самих себя. Вновь возникшие 79-строчные начали размножаться за счет оригинальных 80-строчных. Но вскоре возникли 45-строчные версии, одалживавшие половину необходимого им кода у более длинных. Это были настоящие паразиты. Вскоре, однако, несколько более длинных программ развили способность, которую Рэй назвал устойчивостью к паразитам. Одна такая программа стала незаметной для паразитов, потому что научилась прятать свою часть. В ответ возник мутантный паразит, который смог ее находить.

Гонка вооружений нарастала. Иногда, запуская компьютер, Рэй сталкивался со спонтанно возникшими сверхпаразитами5, социальными сверхпаразитами и даже сверхсверхпаразитами. И все это — в эволюционирующей системе, первоначально смехотворной простоты. Стало понятно, что «гонка вооружений» между хозяином и паразитом — один из самых важных эволюционных процессов.

Но в приведенной аналогии есть изъян. В настоящей гонке вооружений старое оружие редко снова дает преимущество. В борьбе же между паразитом и его хозяином противники часто забывают, как сражаться против старого оружия, которое из-за этого может стать наиболее эффективным. Черной Королеве нельзя стоять на одном месте, даже если она в итоге возвращается туда, откуда пришла — подобно Сизифу, приговоренному провести вечность в тщетных попытках закатить на гору камень, который все время срывается и катится обратно вниз.

У животных есть три способа защитить свои тела от паразитов. Первый — расти и делиться так быстро, чтобы оставить паразитов далеко позади. Это хорошо известно тем, кто разводит растения. Например, кончик побега, в который растение вкладывает все свои ресурсы, обычно не содержит паразитов. Одна оригинальная теория говорит, что сперматозоиды малы именно для того, чтобы в них не было места бактериям, которые могли бы заразить яйцеклетку. Вскоре после оплодотворения в человеческом эмбрионе происходит целый взрыв клеточного деления — возможно, чтобы оставить позади любые вирусы и бактерии, застрявшие в отдельных частях делящихся клеток. Вторая защита — половое размножение, о чем мы поговорим позже. Третья — иммунная система, которой пользуются только потомки рептилий. У растений, многих насекомых и амфибий есть дополнительный метод — химическая защита. Они вырабатывают токсичные для паразитов вещества. Правда, некоторые виды паразитов в ответ вырабатывают способность разрушать токсины. Ну, и так далее: гонка вооружений несется на всех парах.

Антибиотики — это химические вещества, которые грибы вырабатывают естественным путем, чтобы убивать своих врагов — бактерии. Но когда антибиотики начал использовать человек, он обнаружил, что бактерии вырабатывают устойчивость к ним с ужасающей скоростью. Есть две связанные с этим удивительные вещи. Во-первых, гены устойчивости прыгают от одного вида к другому — от безвредных кишечных бактерий к патогенным — путем генной передачи, не похожей на половой процесс. Во-вторых, многие микробы, похоже, уже заранее обладали генами устойчивости к антибиотикам — их нужно было только заново включить. Гонка вооружений между бактериями и грибами уже давным-давно дала первым способность бороться с антибиотиками — способность, которую, как они «думали», им никогда не придется использовать внутри человеческого кишечника.

Поскольку паразиты, по сравнению со своими хозяевами, живут недолго, они могут быстрее эволюционировать и адаптироваться. За 10 лет гены ВИЧ (вируса СПИД) изменились так же сильно, как гены человека меняются за 10 миллионов лет. Для бактерии 30 минут — это целая жизнь, и люди, у которых поколения длятся по 30 лет, — это эволюционные черепахи.

Как взломать генетический замок

Однако эволюционные черепахи перемешивают свои гены сильнее, чем эволюционные зайцы. Открытие Остина Берта о связи между длиной поколения и количеством рекомбинаций свидетельствует о том, что Черная Королева работает. Чем длительнее ваше поколение, тем интенсивнее необходимо перемешивать гены, чтобы справиться с паразитами. Белл и Берт выяснили, что одного только присутствия вредной паразитической хромосомы под названием «B-хромосома» достаточно, чтобы вызвать у вида дополнительную рекомбинацию. Половое размножение, похоже, является главным средством борьбы с паразитами. Но как это происходит?

Оставим пока в покое блох и комаров и сконцентрируемся на вирусах, бактериях и грибах — возбудителях большинства заболеваний. Эти организмы специализируются на взломе клеток: грибы и бактерии едят их, вирусы переводят клеточную машинерию хозяина на рельсы сборки новых вирусов. В любом случае, паразиты должны попасть внутрь клетки. Чтобы сделать это, они используют специальные белковые молекулы, которые подходят к молекулам на поверхности клеток хозяина как ключи: паразиты связываются с хозяйскими белками. Гонка вооружений в данном случае связана именно с ними: паразиты изобретают новые ключи — хозяева меняют замки. Так и просится объяснение полового размножения в стиле группового отбора: в любой момент времени у половой формы много разных замков, а у бесполой все замки одинаковые. Паразит с правильным ключом быстро уничтожит бесполую форму, но не уничтожит половую. Широко известно, что, превращая поля в монокультуры высокоинбредных6 линий пшеницы и кукурузы, мы вызываем эпидемии заболеваний, с которыми можно справиться только пестицидами, вынуждено использующимися во все больших и больших количествах.

Однако объяснение этого принципом Черной Королевы и проницательнее, и сильнее объяснения групповым отбором: потомство половой формы выживет с большей вероятностью, чем бесполой. Преимущество полового размножения проявляется за одно поколение, поскольку замок, распространенный у родителей, заставляет паразита подобрать к нему ключ. Можно быть уверенным, что уже через несколько поколений он в популяции встречаться не будет, ибо к тому времени подходящим к нему ключом будут обладать все паразиты. Преимущество — всегда у редких вариантов.

Виды с половым размножением могут пользоваться чем-то вроде библиотеки замков, недоступной бесполым. Она известна по двум длинным словам, которые обозначают функционально схожие явления: гетерозиготность и полиморфизм. Когда линия становится инбредной, и то, и другое теряется. Оба слова обозначают, что в популяции в целом (полиморфизм) и в каждом индивиде по отдельности (гетерозиготность) встречаются разные версии одного и того же гена. Хороший пример — полиморфный цвет глаз у европейцев: голубой и карий. Многие кареглазые люди, помимо гена карих глаз, несут рецессивный ген голубых — они гетерозиготны. Для дарвинистов наличие этих полиморфизмов почти так же загадочно, как и существование полового размножения, поскольку оно предполагает, что гены карих и голубых глаз одинаково полезны7. Конечно, если бы карие глаза были принципиально лучше голубых (или, что ближе к реальности, если бы нормальные гены были лучше генов серповидно-клеточной анемии), то один ген постепенно вытеснил бы остальные. Так почему же мы набиты таким большим количеством разных версий генов? Почему гетерозиготность настолько распространена? В случае серповидно-клеточной анемии потому, что вызывающий ее ген помогает справляться с малярией. Там, где бушует последняя, гетерозиготы (те, у кого есть один нормальный ген и один — серповидно-клеточный) выживают лучше, чем гомозиготы (те, у кого оба гена либо нормальные, либо серповидно-клеточные), страдающие, соответственно, от малярии или анемии.

Этот случай заезжен во всех биологических учебниках, потому трудно осознать, что это не исторический анекдот, а пример общего правила. Он показывает, что многие из самых полиморфных генов — группы крови, белки гистосовместимости и т. п. — влияют на устойчивость к заболеваниям. Это гены замков. Более того, некоторые из этих полиморфизмов существуют с древних времен. Есть и такие гены, которые представлены в одних и тех же нескольких версиях и у человека и у коровы. Это значит, что вы, читатель, по этому гену можете оказаться больше похожи на какую-то определенную корову, чем на вашу супругу или супруга (у которых тоже где-то есть «своя» корова). Это еще удивительнее, чем если бы оказалось, что слово «мясо», на французский переводится как viande, а на немецкий — fleisch, в какой-нибудь глухой деревушке в Новой Гвинее звучало бы как viande, а в соседней — fleisch. То есть какая-то мощная сила работает над тем, чтобы большинство версий каждого гена выжило и чтобы никакая из них сильно не менялась.

Можно почти с полной уверенностью сказать: эта сила — инфекционные заболевания. Как только ген замка становится редким, соответствующий паразитный ген ключа тоже становится редок — и замок снова «ведет в счете». Есть и другие механизмы, благоприятствующие полиморфизму и дающие редким генам селективное преимущество над распространенными. Хищники обычно пропускают редкие формы добычи, выбирая самые частые. Дайте птице в клетке кусочки еды, окрашенные, в основном, в красный цвет, а несколько покрасьте в зеленый. Уверяю, она быстро разберется, что красные кусочки съедобны, а зеленые сначала трогать не будет. Дж. Б. С. Холдейн первым понял, что паразитизм — даже в большей степени, чем хищничество — помогает поддерживать полиморфизм. Особенно если успех паразита в нападении на новую форму хозяина сопряжен с потерей эффективности атаки на старую форму.

Еще раз внимательно посмотрим на метафору с ключами и замками. У льна есть 27 версий пяти разных генов, определяющих устойчивость к ржавчинным грибам — 27 версий пяти замков. Грибы имеют несколько версий ключей для каждого замка. Смертоносность ржавчинного гриба определяется тем, насколько хорошо его пять ключей подходят к пяти замкам льна. Это не совсем похоже на настоящие ключи и замки, потому что в данном случае достаточно даже частичного соответствия: ржавчине перед заражением льна не обязательно открывать каждый замок. Но чем больше последних она откроет, тем губительнее ее действие.

Что общего у полового размножения с вакцинацией

Сейчас непоседливые всезнайки начнут ерзать от нетерпения, потому что я ни словом не обмолвился об иммунитете. Они скажут, что нормальный способ бороться с болезнью — это не секс, а антитела, прививки или что-то в этом роде. Но иммунная система — довольно недавнее, по эволюционным меркам, изобретение: она появилась у рептилий всего около 300 миллионов лет назад. А у лягушек, насекомых, омаров, улиток и дафний ее и вовсе нет. И потом, есть одна оригинальная теория в стилистике Черной Королевы, объединяющая иммунную систему с половым размножением. Ее создатель, Ганс Бремерман (Hans Bremermann) из Калифорнийского университета в Беркли, приводит в пользу этого удивительный довод. Он утверждает, что без полового размножения иммунная система не работала бы.

Вообще, иммунная система построена на работе из белых кровяных телец — лейкоцитов, которых встречается порядка 10 млн типов. Каждый из них носит на себе белковый замок, называющийся антителом и соответствующий ключу, имеющемуся у бактерии и называемому антигеном. Если последний входит в замок, лейкоцит начинает неистово плодиться и производит армию лейкоцитов, которая набрасывается на ключеносца — будь это вирус гриппа, палочка Коха или даже клетки пересаженного сердца. Но у тела есть одна проблема: оно не может содержать армию для каждого типа замка, готовую распознать все типы ключей. Дело в том, что места там хватит либо миллионам клеток одного типа, либо миллионам типов, представленных одной клеткой каждый — но не миллионам клеток миллионов типов. Тело содержит всего несколько копий каждого лейкоцита. Встречая антиген, подходящий к его замку, он начинает размножаться. Отсюда — задержка между началом гриппа и иммунным ответом, который вас вылечивает.

Каждый замок производится чем-то, вроде устройства случайной сборки, которое старается содержать настолько полную библиотеку типов замков, насколько это возможно — даже если некоторые типы паразитических ключей пока еще никогда не встречались. Это делается потому, что паразиты постоянно меняют свои ключи — подбирают такие, которые подойдут к меняющимся замкам хозяина. Иммунная система, таким образом, готовится к этому заранее. Но случайность сборки означает, что среди многих типов лейкоцитов производятся и такие, которые могут атаковать собственные клетки хозяина. Чтобы этого избежать, последние снабжаются паролем, известным как главный антиген гистосовместимости. Он-то и останавливает атаку (пожалуйста, простите мне запутанную метафору — ключи, замки и пароли... Еще больше запутывать не буду).

Чтобы победить, паразит к тому моменту, когда набирает силу иммунный ответ (как это делает грипп), должен либо заразить кого-то другого, либо спрятаться внутри хозяйских клеток (как это делает ВИЧ), либо часто менять свои ключи (как это делает малярийный плазмодий), либо пытаться имитировать пароль от хозяйских клеток, который позволяет не обращать на себя внимание иммунной системы. Биларзия, к примеру, хватает «молекулы пароля» с хозяйских клеток и прикрепляет их к себе — чтобы замаскироваться от проплывающих мимо лейкоцитов. Трипаносомы, вызывающие сонную болезнь, постоянно меняют ключи, включая и выключая один за другим разные гены. ВИЧ — самый изощренный паразит. Согласно одной теории, он продолжает мутировать так, что каждое его поколение использует разные ключи. Время от времени хозяин находит замки, которые подойдут к ключам, и вирус подавляется. Но, в итоге — к примеру, через 10 лет, — случайная мутация меняет ключ вируса так, что у хозяина не находится подходящего замка. В этот момент вирус побеждает. Он находит пробел в ассортименте замков иммунной системы и начинает восстание. В сущности, согласно этой теории, ВИЧ эволюционирует до тех пор, пока не найдет брешь в иммунной защите человека.

Другие паразиты пытаются имитировать пароли. И вот мы видим, как отбор давит на паразита, заставляя его имитировать пароли хозяина, давит на хозяина, заставляя его продолжать менять пароли — и именно в этот момент, согласно Бремерману, возникает необходимость в половом размножении.

Гены гистосовместимости, которые не только определяют пароли, но и отвечают за восприимчивость к инфекционным болезням, очень полиморфны. В среднестатистической популяции мышей существует более сотни версий каждого гена гистосовместимости. У людей — еще больше. Каждый человек несет уникальную их комбинацию, поэтому органы, пересаженные от одного человека к другому (если это не однояйцевые близнецы), без принятия специальных препаратов всегда отторгаются. Такой высокий полиморфизм невозможно поддерживать без скрещивания.

Это — только гипотеза или у нее есть доказательства? В 1991 году Эдриан Хилл (Adrian Hill) с коллегами из Оксфордского университета получили первое хорошее свидетельство в пользу того, что при распространении инфекционных заболеваний возрастает разнообразие генов гистосовместимости. Они обнаружили, что определенный тип такого гена — HLA-Bw53 — встречается часто там, где распространена малярия, а в других местах — редко. Более того, у болеющих малярией детей, в основном, этого гена нет. Возможно, поэтому они и заболевают. Согласно экстраординарному открытию Уэйна Поттса (Wayne Potts) из университета Флориды в Гэйнсвилле, домовые мыши выбирают в качестве половых партнеров только таких мышей, у которых гены гистосовместимости отличаются от их собственных. Они определяют это по запаху. Такие сексуальные предпочтения максимизируют генетическое разнообразие и делают мышат более устойчивыми к заболеваниям.

Билл Гамильтон и власть паразитов

Идея о том, что половое размножение, полиморфизм и паразиты как-то связаны между собой, приходила в голову многим. Лучше других ее разработал Дж. Б. С. Холдейн — в своей характерной манере опережать современников на несколько шагов.

Осмелюсь предположить, что [гетерозиготность] играет определенную роль в устойчивости к инфекционным заболеваниям. Когда отдельная линия бактерий или вирусов адаптируется к индивидам с определенной биохимической конституцией, другие варианты конституции оказываются к ней относительно устойчивы.

Холдейн написал это в 1949-м, за четыре года до того, как была открыта структура ДНК. Индийский коллега Холдейна, Суреш Джайякар (Suresh Jayakar) спустя несколько лет разработал эту идею еще подробнее. Но эти гипотезы оставались незамеченными, пока в конце 1970-х сразу пять человек независимо друг от друга не пришли к таким же идеям. Это были Джон Дженик (John Jaenike) из Рочестера, Грэхэм Белл из Монреаля, Ганс Бремерман из Беркли, Джон Туби (John Tooby) из Гарварда и Билл Гамильтон (Bill Hamilton) из Оксфорда.

Но именно последний активнее всего исследовал связь между половым размножением и инфекционными заболеваниями. Гамильтон — типичнейший рассеянный профессор, шагающий по улицам Оксфорда с отсутствующим взглядом. Его скромные манеры, а также расслабленный и легкий стиль повествования могут ввести в заблуждение. Он имеет привычку оказываться в нужном месте в нужное время. В 1960-х создал теорию родственного отбора (kin selection). Затем, в 1967-м, натолкнулся на причудливую междоусобицу генов, до которой мы доберемся в следующей главе. К 1980-м он предвосхитил большинство своих коллег, объявив взаимность ключевым моментом в кооперации между людьми. В этой книге мы вновь и вновь будем обнаруживать, что идем по его следам.

Обратившись за помощью к двум коллегам из университета Мичигана, Гамильтон построил компьютерную модель полового размножения и инфекционных заболеваний, маленький мир искусственной жизни. Все начиналось с воображаемой популяции в две сотни особей. Они были похожи на людей — каждая начинала размножаться в 14 лет, продолжала примерно до 35 и рожала одного потомка каждый год. Но компьютер устроил так, что часть из них размножалась половым путем (т. е. каждого ребенка должны были произвести и вырастить два родителя), а часть была беспола. Смерти же происходили случайно. Как и ожидалось, каждый раз, когда запускался компьютер, половая форма быстро исчезала. В игре между половым и бесполым размножением последнее, при прочих равных, всегда побеждает.

Затем исследователи ввели в модель несколько видов паразитов — по 200 особей каждого вида. При этом мощь их воздействия зависела от «генов вирулентности»8, которым соответствовали «гены устойчивости» у хозяина. В каждом поколении самые неустойчивые хозяева и самые незаразные паразиты гибли. Теперь бесполая форма потеряла свое преимущество, и в игре обычно стало побеждать половое размножение. Особенно часто это происходило, если генов устойчивости и заразности у соответствующих персонажей оказывалось много9.

В циклах программы, как и ожидалось, сначала распространяются самые лучшие противопаразитные гены. Но потом за ними подтягиваются гены вирулентности, которые могут взломать их защиту. В результате, противопаразитные снова становятся редкостью, после чего — за ненадобностью — становятся редкими и соответствующие гены вирулентности и т. д. Как сказал Гамильтон, «противопаразитные адаптации постоянно устаревают». Но исчезающая адаптация в один прекрасный момент перестает редеть и может снова распространиться. «Главный смысл полового размножения, по нашей теории, в том, что оно сохраняет гены, которые, возможно, сейчас и неудачны, но потом их можно будет использовать вновь, — писал Гамильтон. — Оно постоянно проверяет гены в комбинациях, ожидая, когда они перестанут быть неудачным». Нет никакого идеального гена устойчивости к заболеваниям — только зыбучие пески временного устаревания10.

Когда Гамильтон запускает симуляцию, на экране компьютера возникает прозрачный куб, внутри которого видны две линии — зеленая и синяя, — бегущие друг за другом, как следы от фейерверка на фотографии, сделанной с большой выдержкой. Паразит гоняется за хозяином в генетическом «пространстве». Или, говоря научнее, каждая грань куба представляет собой частоту определенной версии гена, а хозяин и паразит перемещаются внутри, согласно изменениям частот генных версий. В половине случаев хозяин в итоге застревает в каком-нибудь углу куба, потеряв все разнообразие своих генов. Мутации, создавая новое разнообразие, эффективно предотвращают такую ситуацию. Но чтобы не застрять в углу, даже не нужно никаких мутаций. Несмотря на то, что стартовые условия симуляции жестко детерминистские, и в модель не вносится никакого элемента случайности, порой происходят совершенно неожиданные вещи. Например, две линии начинают преследовать друг друга на краю куба по абсолютно устойчивой траектории, приблизительно за 50 поколений меняя один ген на другой, потом другой на третий и т. д., и в итоге возвращаясь в начальную точку. Иногда возникают странные волны и циклы. А иногда — полный хаос, в котором две линии просто заполняют куб цветным спагетти. В этом есть что-то удивительно живое.

Конечно, эта модель едва ли похожа на реальный мир: она может доказать что-то не больше, чем плавающая уменьшенная копия линкора гарантирует плавучесть настоящего корабля. Но она помогает определить условия, при которых Черная Королева будет бежать вечно в ситуации, когда очень упрощенная версия человека и чудовищно упрощенная версия паразита будут менять свои гены циклически или случайным образом. Вот эти условия: они оба должны размножаться половым путем.

Половое размножение на высоте

Многое из того, что предсказывает теория инфекционных заболеваний Гамильтона, совпадает с положениями мутационной теории Алексея Кондрашова, с которой мы столкнулись в предыдущей главе (согласно ней, половое размножение необходимо для очистки популяции от вредных мутаций). Как и в истории с поливальной машиной и дождем, обе теории объясняют, как «намокла дорожка». Но которая из них верна? Полученные в последние годы материалы по экологии делают более достоверным вариант Гамильтона. Существуют географические области, в которых мутации происходят часто, а инфекционные заболевания — редко. Например, на вершинах гор гораздо больше ультрафиолетового света того типа, который повреждает гены и вызывает мутации. Если прав Кондрашов, то половое размножение на горных вершинах должно быть интенсивнее. Но на самом деле это не так. Альпийские цветковые растения размножаются половым путем реже других покрытосеменных. У некоторых же из последних высокогорные формы бесполы, а низинные применяют половое размножение. Среди пяти видов Townsendia (альпийской ромашки) бесполые формы обнаруживаются на большей высоте, чем половые. У Townsendia condensata, которая живет очень высоко, до сих пор найдена лишь одна популяция с половым размножением, и она — наиболее низко расположенная.

Конечно, все это можно объяснить иначе, не приплетая никаких паразитов: чем выше вы забираетесь, тем холоднее становится и тем меньше можно полагаться на насекомых в вопросах опыления. Но если бы Кондрашов был прав, то все эти факторы были бы ничтожны, по сравнению с необходимостью бороться с грузом мутаций. Кроме того, высотное разнообразие местообитаний дублируется широтным. Вот что пишут учебники о связи типа размножения с широтной изменчивостью: «Есть клещи и вши, жуки и мухи, мотыльки, кузнечики, многоножки и многие другие группы организмов, в популяциях которых самцы исчезают по мере того, как исследователь двигается от полюса к тропикам».

Другая тенденция, которую объясняет теория паразитов, состоит в том, что большинство бесполых растений — короткоживущие однолетние формы. Долгоживущие деревья сталкиваются с большой проблемой: у их паразитов есть время для адаптации к их генетической защите, эволюционировать. К примеру, старые ели Дугласа заражены кокцидами (которые выглядят как аморфные капли, даже не очень похожие на животных) сильнее, чем молодые. Пересаживая этого паразита с одного дерева на другое, ученые смогли показать: за этим стоит улучшение адаптации нападающих, а не ослабление защиты старых деревьев. Таким образом, последние не сделали бы ничего хорошего для своего потомства, если бы производили его идентичным себе — хорошо адаптированные к прежней защите паразиты немедленно поселились бы и на молодых побегах. Вместо этого деревья размножаются половым путем и дают отличное от себя потомство.

Возможно, инфекция даже кладет предел длительности жизни организма: не имеет смысла пытаться пережить тот момент, когда паразиты адаптируются к вашей защите. Мы так и не знаем, каким образом тисы, остистые сосны и гигантские секвойи умудряются жить тысячи лет, но зато нам известно, что из-за наличия в их коре и древесине специальных веществ, они удивительно устойчивы к разложению и паразитам. В калифорнийской Сьерра-Неваде лежат стволы упавших секвой, частично заросшие столетними корнями гигантских сосен — и их древесина остается твердой и гладкой.

Есть большое искушение предположить, что удивительно синхронизированное цветение бамбука может быть связано с половым размножением и инфекцией. Некоторые виды бамбука цветут всего один раз в 121 год, делают это одновременно во всем мире, а затем умирают. Это дает их потомкам целый ряд преимуществ: у них нет живых родителей, с которыми им пришлось бы конкурировать, а все паразиты гибнут вместе с родительскими растениями. Кстати, у тех, кто питается последними, тоже возникают проблемы: цветение бамбука становится бедой для панд.

Любопытно, что самим паразитам часто тоже приходится размножаться половым путем — несмотря на страшные неудобства, которые им это доставляет. Билярзия, живущая внутри человеческой вены, не может просто так отправиться на поиски партнера. Приходится ждать попадания в организм хозяина другого, генетически отличающегося червя, с которым можно будет произвести потомство половым путем. Чтобы угнаться за своими размножающимися половым путем хозяевами, паразитам тоже нужно половое размножение.

Бесполые улитки

Но все это — скорее абстрактные рассуждения, чем результаты точных научных экспериментов. Есть более очевидные свидетельства в пользу «паразитной теории» возникновения полового размножения. Самое тщательное ее исследование было проведено в Новой Зеландии тихим американским биологом по имени Кертис Лайвли, который впервые занялся эволюцией полового размножения, когда писал студенческую курсовую работу. Вскоре он оставил другие исследования и сосредоточился именно на этом вопросе, для чего поехал в Новую Зеландию, где стал изучать улиток ручьев и озер. Там-то он и обнаружил, что в одних популяциях нет самцов и размножение происходит бесполо, а в других самки спариваются с самцами и две половые формы устойчиво воспроизводятся. Исследователь оценивал распространенность полового размножения, подсчитывая долю самцов в выборках. Если верна теория «викария из Брэя» и улиткам половое размножение необходимо для адаптации к изменениям окружающей среды, то в ручьях — более изменчивых местообитаниях — самцов должно было быть больше, чем в озерах. Если верна «теория заросшего берега», и половое размножение происходит из-за внутривидовой конкуренции, то все должно быть наоборот, ибо озера — это стабильные, перенаселенные местообитания. А если верна паразитная теория, самцов больше там, где больше паразитов.

Больше всего самцов оказалось в озерах, в среднем — около 12%. А в ручьях — 2%. Соответственно, «теория викария из Брэя» идет на свалку. Но в озерах и паразитов больше — соответственно, паразитную теорию нельзя сбрасывать со счетов. И чем внимательнее Лайвли изучал вопрос, тем более обещающей выглядела именно она. Не было ни одной популяции половых форм, в которой не было бы паразитов.

Но первое исследование не исключало «теорию заросшего берега», поэтому Лайвли вернулся в Новую Зеландию и повторил исследование. На этот раз он намеревался выяснить, были ли улитки и их паразиты генетически адаптированы друг к другу. Он брал последних из одного озера и пытался заразить ими первых из другого. Оказалось, паразиты лучше всего заражают улиток из своего родного озера. Это, вроде бы, опровергает паразитную теорию. Но ожидать, что хозяин должен быть более устойчив к «своей» инфекции — очень хозяиноцентрично (почему бы, наоборот, паразиту не быть более вирулентным для «своего» хозяина?). Паразит все время пытается перехитрить защиту «своей» улитки и, вероятнее всего, отстает от нее всего на один молекулярный шаг — его ключи подходят к замкам, которые у хозяйки еще недавно были наиболее распространены. А у улиток из другого озера замки сильно отличаются. Поскольку паразит, о котором идет речь (маленькое создание под живописным названием Microphallus), попросту кастрирует улитку, преимущество последних с новыми замками просто огромно. Сейчас Лайвли проводит лабораторный эксперимент, чтобы выяснить, действительно ли присутствие паразитов предотвращает вытеснение половых форм бесполыми.

Новозеландские улитки не позволяли сделать однозначный вывод, но другое исследование Лайвли — на маленькой мексиканской рыбке под названием пецилиопсис — значительно укрепило позиции паразитной теории. Пецилиопсис иногда скрещивается с родственным видом и производит триплоидного гибрида (имеющего все гены в трех копиях). Триплоиды не могут воспроизводиться половым путем, но каждая гибридная самка в состоянии бесполо производить собственные клоны — если, конечно, получает от нормального самца сперму (которая не участвует в оплодотворении, но запускает механизм воспроизводства). Лайвли и Роберт Вриенхок (Robert Vrijenhoek) из университета Рутгерса в Нью-Джерси ловили пецилиопсисов в трех разных прудах и считали у них количество пятен, вызываемых цистами трематод. Чем большей была рыба, тем больше на ней было черных пятен. В первом пруду гораздо больше пятен оказалось у бесполо размножающихся гибридов, а не у половых форм. Во втором, где сосуществовали два разных бесполых клона, представители более распространенного из них были заражены сильнее, а более редкий клон и половые формы оказались в основном устойчивы к инфекции. Именно это Лайвли и предсказывал: черви приведут свои ключи в соответствие с самыми распространенными в пруду замками, каковыми будут являться представители самого распространенного клона. Более редкий же, а также половые формы, замки которых более уникальны, окажутся в относительной безопасности.

Но самое интересное происходило в третьем пруду. В засуху 1976-го он высох и через два года был реколонизирован всего несколькими пецилиосисами. К 1983-му все они стали высокоинбредными, и половые формы оказались даже более восприимчивы к трематодам, чем клоны. А вскоре более 95% здешних пецилиопсисов составляли бесполые клоны. Это полностью согласуется с паразитной теорией, поскольку половое размножение не дает преимущества, если не увеличивает генетического разнообразия11: не имеет смысла менять замок, если в магазине продается только один его вариант. В качестве источника новых типов замков Лайвли и Вриенхок подселили в пруд нескольких размножающихся половым путем самок. И за несколько лет половые формы стали абсолютно невосприимчивы к трематодам, которые теперь принялись атаковать гибридных клонов — и половых форм в пруду стало более 80%. Чтобы преодолеть двойной проигрыш в числе потомков, половому размножению оказалось необходимо всего лишь немного генетического разнообразия.

Это исследование на пецилиопсисах — прекрасная иллюстрация того, как половое размножение позволяет хозяевам ставить своих паразитов перед дилеммой: какой ключ выбрать. Конкурируя друг с другом, они должны все время совершать выбор, настраиваться на самый распространенный тип хозяев и, таким образом, пилить сук, на котором сидят, способствуя лучшему выживанию хозяина менее распространенного типа. Чем лучше ключи паразитов подходят к замкам, тем быстрее хозяин поменяет их.

Половое размножение заставляет паразитов все время подбирать ключи. Завезенная в Чили из Европы ежевика стала там сорняком, и чтобы контролировать ее численность, туда ввезли ржавчинный гриб. Он хорошо справлялся с бесполыми формами ежевики, но не смог ничего сделать с половыми. Потомство от скрещивания разных сортов ячменя или пшеницы выживает лучше, чем чистые сорта, и около 2/3 этого преимущества можно отнести к тому, что ложномучнистая роса на гибридных сортах распространяется хуже, чем на чистых.

В поисках нестабильности

Объяснение паразитной теорией Черной Королевы полового размножения — прекрасный пример того, как в науке для решения одной проблемы приходится объединять вместе несколько разных подходов. Ведь идея о паразитах и половом размножении возникла у Гамильтона и его коллег не на пустом месте. Они пользуются данными сразу трех исследовательских направлений, которые только сейчас сошлись вместе. Первое исследует, как паразиты контролируют численность и запускают в популяциях циклические процессы. Оно впервые обозначилось в работе Альфреда Лотки (Alfred Lotka) и Вито Вольтерры (Vito Volterra) в 1920-х и было окончательно сформулировано в виде стройной теории Робертом Мэем (Robert May) и Роем Андерсоном (Roy Anderson) в 1970-х годах в Лондоне. Второе — открытие в 1940-х Дж. Б. С. Холдейном и его коллегами высокого уровня генетического полиморфизма. Это интереснейший феномен, заключающийся в том, что почти любой ген почти у любого вида представлен несколькими разными версиями — но что-то мешает одной из них вытеснить все остальные варианты. Третье — идея Уолтера Бодмера (Walter Bodmer) и коллег о генах защиты, работающих по принципу «ключ-замок». Гамильтон объединил вместе все три направления исследований и пришел к выводу: паразиты находятся в состоянии постоянной войны с хозяевами, причем последняя ведется путем переключения с одного гена устойчивости на другой — отсюда и возникает батарея разных версий генов. Все это не работало бы без полового размножения.

По всем трем исследовательским направлениям прорыв произошел с отказом от идеи стабильности. Лотка и Вольтерра хотели понять, могут ли паразиты устойчиво контролировать популяции хозяев; Холдейн интересовался тем, что заставляет полиморфизмы стабильно присутствовать в популяции столь долгое время. Гамильтон же подошел к вопросу иначе. «Там, где другие надеялись обнаружить стабильность, я, чтобы подтвердить свое объяснение полового размножения, надеялся найти столько изменчивости и лабильности... сколько только можно себе представить».

Слабое место гамильтоновской теории — требование циклического чередования восприимчивости и устойчивости, которое пока однозначно не обнаружено. Преимущество должно все время то увеличиваться, то уменьшаться — хотя не обязательно регулярно. В природе есть примеры стабильных циклов: скажем, у леммингов и других грызунов каждые 3 года случаются резкие увеличения численности, между которыми плотность популяции невелика. Шотландская куропатка тоже переживает регулярные — примерно четырехлетние — циклы увеличения и сокращения численности, которые вызываются паразитическим червем. Но более распространены не циклы, а волны хаотического характера (как у саранчи) или гораздо более стабильные рост или спад численности (как у людей). Возможно, смена версий генов устойчивости к заболеваниям действительно вызывает циклы в численности популяции, но пока никто этого не доказал.

Тайна коловраток

Объяснив, зачем нужно половое размножение, я должен опять вернуться к истории о бделлоидных коловратках — микроскопических пресноводных существах, у которых никогда не бывает полового размножения. Этот факт Джон Мэйнард Смит назвал «скандалом». Чтобы паразитная теория оказалась верна, у них должен существовать какой-то альтернативный механизм борьбы с паразитами. Тогда их случай будет исключением, подтверждающим, а не опровергающим, правило.

Впрочем, возможно, «скандал» с коловратками уже находится на пороге своего разрешения. Но, в лучших традициях исследований полового размножения, до сих пор не понятно, в чью пользу оно окажется. Две новые теории, которые могут объяснить отсутствие полового размножения у бделлоидных коловраток, приводят к разным результатам.

Первая принадлежит Мэтью Мезельсону. Он считает, что генетические инсерции — прыгающие гены, создающие собственные копии и вставляющие их в новые части генома — по какой-то причине не являются проблемой для коловраток, и половое размножение для вычищения инсерций из генов им не требуется. Это объяснение в стиле Кондрашова с легким гамильтоновским оттенком (Мезельсон называет прыгающие инсерции формой генетической венерической инфекции). Вторая теория лежит в русле основной гамильтоновской идеи. Ричард Лэйдл (Richard Ladle) из Оксфордского университета обратил внимание на то, что некоторые группы животных способны полностью высыхать — терять около 90% влаги, — но оставаться живыми. Это требует удивительных биохимических особенностей. И ни у кого их таких животных нет полового размножения. Некоторые коловратки (помните?) умеют высушиваться, превращаться в маленькие цисты, которые носятся с ветром по всему миру в виде пыли. Моногононтные коловратки, у которых есть половое размножение, так не умеют (хотя на это способны их яйца). Лэйдл считает, что самовысушивание может быть хорошим средством от паразитов, способом очистки тела. Исследователь пока не может объяснить, по какой именно причине хозяева относятся к высыханию спокойнее, чем паразиты. В любом случае, вирусы — не более, чем маленькие молекулярные машинки и, конечно же, могут перенести хорошую сушку. Но Лэйдл, похоже, находится на верном пути. Если нематода или тихоходка не умеет высыхать, значит, она размножается половым путем, а если умеет, то ее популяция состоит из клонирующихся самок.

Паразитная теория Черной Королевы побила своих конкурентов по всем статьям. Правда, отдельные очаги сопротивления пока остаются. Теория генетической репарации держится в Аризоне, Висконсине и Техасе. Стяг Кондрашова все еще собирает последователей. Несколько одиноких сторонников теории заросшего берега тоже продолжают отстреливаться из своих лабораторий. Джон Мэйнард Смит подчеркнуто называет себя плюралистом. Грэхэм Белл говорит, что утратил «гранитную уверенность» в «заросшем береге», вдохновившую его на написание книги «Природа как шедевр», но так и не превратился в убежденного сторонника паразитной теории. Джордж Уильямс до сих пор настаивает, что половое размножение — это постигшая нас историческая случайность. Джо Фельзенштейн (Joe Felsenstein) считает, что спор вообще несостоятелен — подобно дискуссии о том, почему золотая рыбка не увеличивает вес емкости с водой, в которую ее запускают. Остин Берт отстаивает неожиданную точку зрения: мол, паразитная теория и теория мутаций Кондрашова — это всего лишь детальные доказательства идеи Вейсмана о том, что половое размножение поддерживает вариацию, необходимую для ускорения эволюции, и что мы сделали полный круг, вернувшись к старой идее. Даже Билл Гамильтон признает: чтобы паразитная теория в чистом виде могла работать, нужно некоторое разнообразие хозяев и паразитов в пространстве и во времени. Гамильтон и Кондрашов впервые встретились в Огайо в июле 1992 года и решили оставаться на своих рубежах, пока не наберется побольше свидетельств в пользу какой-либо из сторон. Но ученые, как и адвокаты, никогда не признают поражения. А я верю, что через век биологи оглянутся назад и скажут, что теория викария из Брэя уступила место теории заросшего берега, а та, в свою очередь, была уничтожена паразитной теорией Черной Королевы.

Половое размножение — это средство от паразитов. Оно необходимо, чтобы гены хозяина на шаг опережали гены инфекции. Самцы в популяции — это не излишество. Они — страховка для самок, средство не потерять детей из-за гриппа или кори. Самки допускают сперматозоиды к своим яйцеклеткам — иначе получившиеся дети будут одинаково уязвимы для первого же паразита, который подберет ключи к их генетическим замкам.

Но, прежде чем начать радоваться своей вновь осознанной важной роли, прежде чем на домашних сейшенах начнут петься хвалебные песни о паразитах, пусть мужчины вздрогнут перед очередным вопросом о смысле своего существования. Пусть они вспомнят о грибах. Потому что многие грибы размножаются половым путем, но у них нет самцов. У них десятки тысяч разных полов, физически идентичных, спаривающихся с другими с одинаковой вероятностью, но неспособных к спариванию с самими собой. Даже многие животные — например, земляные черви — гермафродитны. Половое размножение не предполагает необходимости наличия самих полов — тем более, именно двух, да еще и таких разных, как у людей. На первый взгляд, два пола — это самая дурацкая система, которую только можно придумать: она требует, чтобы целых 50% встреченных особей не подходили вам в качестве половых партнеров. А будь мы гермафродитами, нашим партнерами мог бы стать каждый. Если бы у нас было десять тысяч полов, как у обычной поганки, мы могли бы спариваться с 99% популяции. Если бы полов было три, нам бы подходили две трети. Похоже, одной паразитной теорией особенностей человеческого полового размножения не объяснить...


1 Кроссинговер — перекрест ДНК двух хромосом, обменивающихся генетическим материалом

2 Абиотические условия — не связанные с другими живыми организмами (температура воздуха, влажность, и т. п.).

3 Положим 30 минут на поколение у бактерий и получим 1 226 400 делений за 70 лет человеческой жизни. За 7 млн лет — с тех пор, как жил наш с шимпанзе общий предок — прошло всего 200 тысяч человеческих поколений, если брать по 30 лет на каждое. — Примеч. авт.

4 Имеется в виду, что на специализированный вид отбор действует сильнее, потому что для него плата за «неуспех» — выше, чем для неспециализированного вида.

5 Сверхпаразиты (гиперпаразиты) — паразиты, паразитирующие на других паразитах.

6 (Высоко)инбредная линия — группа скрещивающихся организмов, для которой характерен высокий уровень инбридинга. Происходит от небольшого числа предков и воспроизводится в результате близкородственных скрещиваний — как породистые собаки и сортовые растения. Чем выше инбридинг, тем больше похожи организмы в линии друг на друга, а результаты полового воспроизводства — на результаты бесполого клонирования: особи похожи и внешне, и биохимическими особенностями.

7 Сегодня для дарвинистов в этом уже нет ничего удивительного: нам известно большое число полиморфных генов, разные аллели которых не демонстрируют сколь-нибудь заметных различий в приспособленности. Полиморфные гены — скорее правило, чем исключение.

8 Вирулентность — способность паразита заражать хозяина.

9 Как видно, условия симуляции предполагают двукратное преимущество бесполых форм (благодаря одинаковой скорости выращивания потомка половой и бесполой самками, т. е. отсутствию отцовского вклада). Тем интереснее тот факт, что, несмотря на это, половые формы выигрывают. Каким же огромным должно было быть их преимущество перед бесполыми, если борьба с паразитами происходила у организмов с изогаметической формой тогда, когда не было двойного преимущества бесполых форм в количестве потомков! (см. сноску на с. 53).

10 Все проблемы с хозяйским иммунитетом или его функциональным аналогом возникают не только у паразитов, но и у симбионтов.

11 Когда двое родителей совпадают по большинству генов, потомки, возникающие в результате полового и бесполого размножения, почти не отличаются друг от друга: все равно, получает ли ребенок два одинаковых гена от двух разных родителей или от одной клонирующейся родительской формы. Поэтому в высокоинбредных популяциях половое размножение не приводит к заметному увеличению генетического разнообразия.


0
Написать комментарий

    Элементы

    © 2005-2017 «Элементы»