Александр Петров

«Гравитация». Глава из книги

Глава 12. Перспективы развития теории гравитации

То, что мы называем прогрессом, —
является заменой одной неприятности на другую.
Генри Хейвлок Эллис

Теории гравитации альтернативные ОТО

Ничто не делает нашу жизнь столь
приятной, как ее неизбежная
альтернатива.
Народная мудрость

Все течет, все изменяется. Было время, казалось, что лучшей теории гравитации, чем ньютоновская, незачем желать. На протяжении всей книги мы рассказывали, как шаг за шагом общая теория относительности «занимала свое место под солнцем». Осталось всего несколько лет до ее 100-летнего юбилея. Каков же сейчас ее статус? Без сомнения, ОТО является самой востребованной теорией гравитации, прежде всего, в астрофизике и космологии, и мы попытались это показать. Теория строения и эволюции звезд, особенно на заключительных этапах; эффекты на поверхности компактных и сверхплотных объектов; космологические модели в разные эпохи эволюции и многоедругое не могут быть удовлетворительно рассчитаны без использования ОТО. На основе эффектов, предсказанных ОТО, создаются целые направления исследований — поиск гравитационных волн, исследование гравитационных линз и т. д. Являясь частью теоретической физики, ОТО используется также во многих фундаментальных исследованиях.

Фактически сразу после подтверждения классическими тестами ОТО завоевала невиданную популярность. Но, конечно, измерениями отклонения луча света далекой звезды в гравитационном поле Солнца, смещения перигелиев планет в Солнечной системе, а также красного гравитационного смещения в поле Земли дело не закончилось и не могло закончиться. В течение всего времени после ее завершения в 1915 году, как основные принципы, так и уравнения непрерывно проверяются и перепроверяются со все возрастающей точностью. Однако результатов, которые бы противоречили ОТО, так и не было получено. Мало того, она давно используется в практических целях, таких как расчет орбит спутников, планет и траекторий межпланетных аппаратов.

Можно сказать, что эффекты ОТО уже используются и в быту: для повышения точности систем навигации и слежения типа GPS. Постоянно на орбитах на высоте 20 000 км находится от 24 до 27 спутников. Для повышения точности используются сигналы от нескольких спутников, обмен сигналами с устройствами на Земле. Для этого необходима строгая синхронизация часов на всех объектах. Оказывается точности атомных часов недостаточно. Необходимо учитывать замедление хода часов, которое происходит, согласно ОТО, в гравитационном поле Земли. Другими словами, одни и те же часы на Земле идут медленнее, чем на орбите. Для высоты 20 000 км эта разница составляет 38 мкс в сутки и приведет к ошибке в определении расстояния до 10 м. Чтобы компенсировать этот эффект, ход часов «по паспорту» на орбите настраивают медленнее. Если их спустить с орбиты и поместить рядом с земными — они будут запаздывать на 38 мкс в сутки.

До сих пор наше изложение фактически демонстрировало успехи ОТО, и может показаться, что в силу этой радужной картины, кроме ОТО никакие другие теории не рассматривались, ничего другого не предлагалось, или вовсе все «неэйнштейновское» наотмашь отметалось. Вовсе нет. Деятельность по созданию теорий гравитации была и остается очень бурной. Развитие теорий и их активная и всесторонняя проверка продвигались рука об руку весь XX век и далее.

Большинство проверок могут быть отнесены к специальным классам, предложенным американским релятивистом Клиффордом Уиллом в 2001 году:

• Простейшие основания.
• Эйнштейновский принцип эквивалентности.
• Параметризованный пост-ньютоновский формализм.

О соответствии двум последним классам поговорим ниже, а сейчас обсудим, что же такое «простейшие основания»?

В начале 1970-х годов группа ученых из Калифорнийского технологического института под руководством идеолога проекта LIGO профессора Кипа Торна, а также Клиффорда Уилла и тайваньского физика Вей-Тоу Ни составила список теорий гравитации XX века. По каждой теории они задались следующими вопросами по проблеме простейших оснований:

• является ли теория самосогласованной?
• является ли она полной?
• согласуется ли она, в пределах нескольких стандартных отклонений, со всеми проведенными к настоящему времени экспериментами?

Критерий «согласование со всеми экспериментами, проведенными к настоящему времени», часто заменялся критерием «согласования с большинством следствий механики Ньютона и специальной теории относительности».

Самосогласованность неметрических теорий включает требования, например, отсутствия в ее решениях тахионов, гипотетических частиц, движущихся со скоростями больше световой; отсутствия проблем в поведении полей на бесконечности и т. п.

Для того чтобы теория гравитации была полной, она должна быть способна описать результаты любого мыслимого эксперимента, она должна быть совместной с другими физическими теориями, подтвержденными экспериментом. Например, любая теория, которая не может из первых принципов предсказать движение планет или поведение атомных часов, является неполной.

Примером неполной и несамосогласованной теории может служить теория тяготения Ньютона в сочетании с уравнениями Максвелла. В такой теории свет (как фотоны) отклоняется гравитационным полем (хотя и вдвое слабее, чем в ОТО), а свет (как электромагнитные волны) — нет.

Если теория не проходила по этим критериям, то ее, тем не менее, не спешили отбрасывать. Если теория была неполна в своих основах, группа пыталась дополнить ее с помощью малых изменений, обычно сводя теорию в отсутствие гравитации к специальной теории относительности. Только после этого делался вывод, достойна ли она дальнейшего рассмотрения. Теорий, которые заслуживают внимания, в 70-х годах насчитывалось несколько десятков. Трудно сказать, но за последние два-три десятилетия их число, возможно, достигло сотни и более. Все зависит от ответа на вопрос, что считать одной теорией, а что классом теорий. Поэтому отбор по различным критериям проводится и сейчас, и с еще большим пристрастием. Это крайне важно, поскольку есть предпосылки, что в ближайшие десятилетия или на малых масштабах, или на больших, или одновременно ОТО будет изменена.

Проверка ОТО на масштабах планетных систем

Теперь вспомним, что основой ОТО как метрической теории является принцип эквивалентности и постулат движения по геодезическим. Известно, что этим основам, если они установлены с абсолютной точностью, удовлетворяют лишь «чисто» метрические теории (с небольшими оговорками), т. е. теории, где гравитационное поле представлено только метрическим тензором. Оказывается, что ОТО это лишь простейший вариант метрической теории. Нисколько не нарушая этих основ, можно представить бесчисленное (без преувеличения) множество метрических теорий. Как тогда можно изменить теорию? За что же зацепиться в этом случае? Конечно, лишь эксперимент и наблюдения могут поставить все на место. Но для классификации альтернативных предложений нужна своя стратегия.

Работу над стандартным формализмом для проверки альтернативных моделей гравитации начал еще в 1922 году Артур Эддингтон (1882–1944). Усовершенствование этого формализма, так или иначе, продолжалось на протяжении десятилетий, а закончили дело американские физики Клиффорд Уилл и Кеннет Нордведт в 1972 году. Ими предложен так называемый параметризованный пост-ньютоновский (PPN) формализм. Он создан для теорий либо чисто метрических, либо с эффективной метрикой, представляющей искривленное пространство-время, где происходят физические взаимодействия. Рассматриваются лишь отклонения от механики Ньютона, поэтому формализм применим только в слабых полях. В общем случае существует 10 PPN-параметров. В случае ОТО 2 из них равны единице, а остальные 8 — нулю.

Чем полезен PPN-формализм в проверке ОТО? Новые технологии позволяют достаточно точно отслеживать движения небесных тел, и современная стандартная проверка происходит следующим образом. С помощью уравнений ОТО именно в PPN виде рассчитываются траектории тел в Солнечной системе. Этот вид оказывается наиболее конструктивным. Затем их сравнивают с данными наблюдений. Современный результат таков, что соответствие теоретических PPN параметров ОТО наблюдаемым подтверждается с точностью от десятых до сотых долей процента — это очень высокая точность.

Другие точные тесты — это наблюдения двойных пульсаров: систем, состоящих из двух нейтронных звезд, их известно сейчас около десятка. Кроме этого, есть системы, состоящие из радиопульсара и белого карлика, они тоже подходят для тестов. На основании этих наблюдений вычисляются параметры орбит. Оказывается, что отклонения от кеплеровских значений совпадают с отклонениями, предсказанными ОТО, также с точностью до десятых и сотых долей процента. Специалисты испытывают большой оптимизм в перспективах повышения точности при изучении именно двойных пульсаров. Он основан на том, что нейтронные звезды имеют размеры в десятки километров в системах с размерами орбит в миллионы километров. В таких системах звезды фактически являются точечными объектами. Их внутреннее строение, внутренние движения, а также деформации практически не влияют на траектории. В отличие от этого, в Солнечной системе все эти факторы, а также влияние многочисленных «соседей» существенно ограничивают повышение точности. Резюмируя, можно сказать, что на масштабах планетных систем ОТО подтверждена с высокой точностью и точность измерений будет повышаться.

Необходимость модификации ОТО

Надо жизнь сначала переделать,
переделав — можно воспевать.
Владимир Маяковский

Однако исследования по созданию теорий альтернативных ОТО, в большей части как раз метрических, не прекращаются. Почему? ОТО хорошо подтверждается, как только что было сказано, на масштабах Солнечной системы. Проверить теорию на больших или меньших масштабах существенно сложнее. ОТО, как и любая другая теория, всего лишь модель для описания реальных явлений. Поэтому реальная природа может совпадать с предсказаниями ОТО на масштабах планетных систем, но отличаться на других масштабах.

Вместе с этим, многие современные теоретические и эмпирические данные говорят о том, что так и должно быть, и модификации необходимы. Например, во многих решениях ОТО необходимо рассматривать сильные гравитационные поля, огромные плотности и т. д. А это требует квантования гравитационного поля. Несмотря на значительные усилия, решающего успеха на этом поприще добиться не удалось. Это наводит на мысль, что на малых масштабах, где требуется квантование, гравитационная теория должна быть изменена. С другой стороны, недавнее открытие ускоренного расширения Вселенной многие ведущие специалисты склонны интерпретировать как геометрический эффект, который можно «получить», модифицировав ОТО на космологических масштабах. Независимо от этого, к необходимости изменений ОТО на больших и малых масштабах приводят результаты исследований в физике фундаментальных взаимодействий.

Если говорить о жизнеспособных теориях, то нет установившейся терминологической разницы для альтернативных, модифицированных или новых теорий. Все они, так или иначе, развивают ОТО, поскольку должны работать не хуже на тех масштабах, где она подтверждается. Разрабатывая модификации ОТО или новые теории, авторы сравнивают их с ОТО в соответствующих режимах точно так же, как ОТО сравнивается с гравитацией Ньютона. Если угодно, должен быть удовлетворен все тот же принцип соответствия, но на новом витке познания.

В настоящее время на многих конференциях по теории гравитации обобщенным (или альтернативным) теориям посвящаются целые секции, по этой тематике выходят отдельные сборники, некоторые теории становятся все более и более самостоятельными. Каковы же основные наиболее популярные и перспективные направления в этих разработках?

Во-первых, ОТО является чисто метрической (или чисто тензорной) теорией. Это означает, что геометрия пространства-времени и материя воздействуют друг на друга без посредников. Таких теорий можно построить бесконечно много (о чем мы уже говорили), и они активно разрабатываются. Как правило, уравнения этих теорий отличаются от уравнений ОТО тем, что они дополняются квадратичными и более высокого порядка по кривизне слагаемыми. Дополнительные члены обычно входят с малыми коэффициентами, которые обеспечивают согласие с наблюдениями, скажем, на масштабах планетных систем, но существенно изменяют решения на космологических масштабах.

Другой класс альтернативных теорий характеризуется тем, что воздействие друг на друга геометрии и материи осуществляется через дополнительное поле, чаще всего это скалярное или векторное поле. Однако вклад этих полей не может быть существенным. Отклонение современных альтернативных теорий от ОТО должно выразиться в разнице соответствующих PPN параметров. Чтобы оценить жизнеспособность отличной от ОТО теории (проверить ее) необходимо регистрировать отклонения от значений PPN параметров в ОТО на уровне 10–6–10-8. Это означает, что точность измерений, как в Солнечной системе, так и в двойных пульсарах, должна быть улучшена на 1–3 порядка.

Теория гравитации Хоржавы

Эта теория является одним из вариантов векторнотензорных теорий гравитации и, пожалуй, самая популярная на настоящий момент. Именно поэтому мы рассказываем о ней. Теория была предложена в 2009 году американским теоретиком-«струнником» чешского происхождения Петром Хоржавой. Она несколько отличается от обычных векторно-тензорных теорий, поскольку в ней вместо векторного поля используется градиент скалярного. С одной стороны, сохраняются свойства векторных теорий, с другой — есть специфические собственные полезные свойства.

Еще раз вспомним, что непротиворечивую квантовую теорию гравитации, в которой не было бы расходимостей, на основе ОТО создать не удалось. Поэтому предлагаются различные модификации, которые на квантовых масштабах существенно расходятся с ОТО и становятся «подходящими» для квантования. Для этого при их построении некоторые принципы, лежащие в основе ОТО, изменяются, т. е. оказываются нарушенными. Конечно, это нарушение должно быть настолько незначительным, чтобы не противоречить лабораторным тестам, и чтобы не изменилось действие теории на масштабах планетных систем, где есть хорошее соответствие с наблюдениями. Именно такой является теория Хоржавы. Мы не будем рассказывать насколько она замечательна в смысле квантования, это несколько в стороне от темы книги, зато расскажем о ее свойствах как гравитационной теории — в чем и насколько они отличны от аналогичных свойств ОТО.

Лоренц-инвариантность. Мы уже обсуждали тот факт, что ОТО как бы «выросла» из специальной теории относительности — механики высоких скоростей, сравнимых со скоростью света. Напомним, что в СТО все инерциальные системы отсчета, движущиеся относительно друг друга равномерно и прямолинейно, эквивалентны. Важно вспомнить об измерениях времени в СТО. В каждой инерциальной системе отсчета часы идут в своем собственном темпе, отличном от темпа часов других систем, если их сравнивать. Однако нельзя выбрать ни «лучший», ни «худший» темп, если часы конструктивно идентичны. То есть собственное время каждой инерциальной системы равноправно в отношении других. Это означает, что в СТО нет выделенного течения времени.

Мы также говорили, что на геометрическом языке инвариантность в СТО при переходе от одной инерциальной системы отсчета к другой эквивалентна инвариантности относительно лоренцевых вращений во всем плоском пространстве-времени. В ОТО из-за «включения» гравитации и, соответственно, искривления пространствавремени лоренц-инвариантность во всем пространстве-времени уже невозможна. Тем не менее, ОТО остается лоренц-инвариантной локально, то есть в малой окрестности каждого наблюдателя. Эта инвариантность является одним из принципов, лежащих в основе ОТО, и связана с принципом соответствия ОТО и СТО.

Хронометрическая теория. В ряде модификаций ОТО нарушена как раз локальная лоренц-инвариантность. Среди них и теория Хоржавы. В последнее время особой популярностью пользуется одна из ее реализаций, так называемая «жизнеспособная» («healthy») непроективная версия, разрабатываемая американскими физиками Диего Бласом и Ориолом Пуйоласом и нашим соотечественником Сергеем Сибиряковым. Эффекты, обсуждаемые ниже, в основном относятся именно к этой модификации ОТО.

Итак, чем же теория Хоржавы отличается от ОТО? В дополнение ко всем обычным полям ОТО добавляют скалярное полеφ, но не обычным образом. Направление его изменения в пространстве-времени определяет специально выделенное направление времени. Именно поэтому скалярное поле называют полем хронона. Тогда поверхности постоянных значений скалярного поля — это поверхности постоянного времени, или «одновременности». В уравнения скалярное поле входит только через производные, поэтому не стоит опасаться бесконечных значений поля хронона. Существенным является только его изменение, а не значения. Поскольку в пространстве-времени есть выделенное направление, то существуют выделенные системы отсчета. Это не свойственно ни СТО, ни ОТО, но свойственно векторно-тензорным теориям. Для наглядности приведем простейший «игрушечный» пример. Одно из решений новой теории — это плоское пространство-время (такое как в СТО) плюс поле хронона, которое оказывается просто временем, φ = t. В СТО мы можем перейти с помощью лоренцевых преобразований из одной координатной системы x, t в другую x', t', где время течет по-другому. В новой теории — не можем, поскольку значение скалярного поля при координатных преобразованиях не меняются, а это есть время. Таким образом, здесь, в отличие от СТО, существуют часы, которые отсчитывают выделенное время.

Поскольку в ОТО гравитационным полем является поле метрики пространства-времени, то ясно, почему новую теорию называют хронометрической. Допустимые ограничения на параметры хронометрической теории дают возможность избежать расходимости при квантовании. Еще раз повторим: это и было главной целью ее построения. Но это теоретический успех, а проверить квантовые эффекты такого уровня сейчас вряд ли возможно.

Однако новая теория должна измениться и в классических (не квантовых) проявлениях. А это дает возможность доказать или опровергнуть ее право на существование. Далее мы покажем, в каких классических явлениях и насколько хронометрическая теория отличается от ОТО, можно ли выявить в наблюдениях эффекты новой теории, проиллюстрируем разницу для некоторых теоретических моделей. Для этого обсудим наиболее яркие, на наш взгляд, примеры.

Гравитационно-волновое излучение. Вспомним, что гравитационная волна в ОТО — поперечная, тензорная, имеет две поляризации (см. рис. 10.2) и распространяется со скоростью света. Гравитационные волны в теории Хоржавы также существуют. Однако помимо двух уже упомянутых тензорных поляризаций имеет место скалярная степень свободы. Это означает, что под действием такой волны к движению пробных частиц добавятся продольные (в направлении распространения волны) смещения. Важно то, что тензорная и скалярная составляющие имеют разные скорости распространения. Кроме того, обе скорости, имея зависимость от параметров модели Хоржавы, должны превышать (!) скорость света, хотя и незначительно. Эти отличия от ОТО интересны, но к сожалению пока только теоретически. До сих пор нет хотя бы непосредственного детектирования гравитационных волн, поэтому фиксация отмеченных различий представляется делом отдаленного будущего.

Тем не менее существует косвенное подтверждение существования гравитационного излучения. Это наблюдения за двойными пульсарами, уменьшение размеров орбит которых свидетельствует о потере энергии на гравитационно-волновое излучение. Этот эффект находится в соответствии с ОТО с относительной точностью 10-2,, о чем мы уже говорили. Но предсказания ОТО и теории Хоржавы различны. Поэтому если последняя жизнеспособна, то есть шанс, что уже дальнейшее увеличение точности выявит эти различия и уточнит параметры новой теории.

Взаимодействие частиц. Мгновенное действие. Теперь для хронометрической теории рассмотрим взаимодействие гравитационного поля с веществом. Обсудим только первое (линейное) приближение, которое может быть доступно для наблюдений. В этом порядке эффекты, связанные с нарушением лоренц-инвариантности, подавлены в силу различных причин, но поле хронона присутствует, оно включено лоренц-инвариантным образом в так называемую эффективную метрику. То есть метрика ОТО модифицируется, и материя распространяется не в исходном пространстве-времени, а в некотором эффективном пространстве-времени, причем универсальным образом. Возможно в будущем именно это взаимодействие позволит обнаружить классические явления, представленные хронометрической теорией.

В приближении слабых полей и малых скоростей пределом гравитационной теории должна стать гравитация Ньютона. В последней взаимодействие двух частиц представлено известным законом Ньютона, где сила пропорциональна массам, гравитационной постоянной, обратно пропорциональна квадрату расстояния, но не зависит от скоростей этих частиц. Присутствие поля хронона изменяет и дополняет и этот закон следующим образом. Незначительно меняется гравитационная постоянная, теперь ее называют эффективной, и появляется зависимость от скоростей. Возможность детектирования этих эффектов определяется константами связи хронометрической теории.

Влияние поля хронона проявляется также в том, что некоторые взаимодействия могут распространяться мгновенно (!), т. е. с бесконечной скоростью. Как сделан этот вывод? Обычно уравнения для возмущений содержат волновой оператор, который состоит из двух частей: пространственной и временной. Величина, обратная коэффициенту при второй части — это квадрат скорости распространения возмущений. Полное отсутствие второй части означает, что эта скорость бесконечна. Именно такую структуру имеет часть уравнений теории Хоржавы. Здесь уместно провести аналогию с теорией Ньютона. В ней точно так же, как и в хронометрической теории, выделено течение времени («абсолютное время») и гравитационное взаимодействие распространяется мгновенно.

Рис. 12.1. Причинно связанные события в СТО и теории Хоржавы
Рис. 12.1. Причинно связанные события в СТО и теории Хоржавы

Как представить мгновенное распространение? Вообразите поверхность постоянного времени, тогда сигнал, распространяясь на ней (то есть без изменения времени), мгновенно проходит любые расстояния. Это недопустимо в таких релятивистских теориях как СТО или ОТО. Обратимся к диаграмме на рис. 12.1. Рассмотрим три точки в пространстве: A, B и C. В момент t = 0 эти точки соответствуют событиям A0, B0, C0, которые, в рамках СТО причинно не связаны. Только в момент t1 событие A0 становится причинно связанным с событием B1 в точке B, а в момент t2 и с событием C2 в точке C. Как и должно быть в СТО (или ОТО), распространение сигналов жестко связано и ограничено световыми конусами. В теории Хоржавы для некоторых взаимодействий это вполне может быть не так. Мгновенное распространение означает, что все три события A0, B0, C0 в момент времени t = 0, произошли как следствие одного мгновенно распространяющегося сигнала, то есть они могут быть причинно связанными. Однако такая «фантастическая» возможность не ограничивает хронометрическую теорию решающим образом. Выделенность направления времени означает, что понятие одновременности определено однозначно, поэтому не возникает проблем с причинностью, хотя бы и такой экзотической.

Солнечная система. Для проверки какой-либо гравитационной теории при измерении движений в планетной системе используется PPN-формализм. Как в любой векторной теории, в теории Хоржавы должны присутствовать эффекты привилегированной системы отсчета.Это приводит к тому, что оказываются ненулевыми PPN-параметры группыα. Действительно, кроме двух PPN-параметров, присущих ОТО, хронометрическая теория имеет еще два: α1 и α2. Чтобы не было противоречий с наблюдениями, они должны быть достаточно малыми: α1 ≤ 10-4 и α2 ≤ 10-7. Будем ждать повышения точности измерений, тогда, возможно, существование α1 и α2 (а значит и теории Хоржавы) будет подтверждено или опровергнуто.

Черные дыры. В ОТО черная дыра представляет объект, где центральная часть, обычно сингулярная, окружена сферической поверхностью, названной горизонтом событий. Его наличие связано с тем, что в ОТО существует предельная скорость — это скорость света. Основное свойство черной дыры состоит в том, что в ОТО никакая частица, никакое поле и даже световой сигнал не могут ее покинуть, то есть уйти за пределы горизонта событий.

В хронометрической теории есть также решения, описывающие объекты типа черных дыр. Однако вспомним, что в этой теории нет предельной скорости, возможно распространение взаимодействий со скоростью большей, чем скорость света и даже мгновенно. Если бы эта возможность была в ОТО, то само понятие горизонта событий потеряло бы смысл, поскольку появляется возможность покинуть объект, находясь и на горизонте событий, и под ним. При этом появляются противоречия, связанные с термодинамикой системы, такие как уменьшение энтропии. Сейчас не известны все решения для черных дыр в теории Хоржавы в силу ее молодости, однако среди известных есть такие, которые позволяют избежать этих осложнений. Оказывается, что в черной дыре в рамках хронометрической теории может быть так называемый универсальный горизонт. Он находится под горизонтом событий («ближе» к сингулярности) и замечателен тем, что поверхности постоянного времени, находящиеся под ним, не пересекают его. Это означает, что сигнал даже бесконечной скорости (мгновенный) не может выйти из-под этого промежуточного горизонта. А для таких объектов вышеупомянутые противоречия снимаются.

На рис. 12.2 представлена так называемая диаграмма Пенроуза черной дыры Шварцшильда. Точки i и i+ представляют всю временную бесконечность прошлого и всю временную бесконечность будущего, точка i0 объединяет всю пространственную бесконечность. Прямая Bi+ является горизонтом событий шварцшильдовой черной дыры — это видно из расположения световых конусов. Действительно, квадрат Bi+i0i — это все внешнее пространство-время вне горизонта событий, в то время как треугольник i+Bi+ — это пространство-время под горизонтом событий, откуда сигнал не может выйти во внешнюю область, и где ломаная линия — это сингулярность r = 0. На диаграмму шварцшильдовой дыры наложена диаграмма черной дыры хронометрической теории. Все кривые, соединяющие i0 и i+, — это сечения постоянного поля хронона j = const, то же самое, постоянного времени (одновременности). Жирная дуга — это тот самый универсальный горизонт ζ= ζ+, под ним, ближе к сингулярности, дуги i+ i+, соединяющие концы ломаной линии — это тоже сечения постоянного времени (одновременности). Ясно, что если сигнал в хронометрической теории распространяется даже мгновенно, то есть вдоль сечений одновременности, то он не сможет пересечь универсальный горизонт и покинуть хронометрическую черную дыру.

Рис. 12.2. Диаграмма хронометрической черной дыры
Рис. 12.2. Диаграмма хронометрической черной дыры

Космология. В масштабах Вселенной теория Хоржавы также имеет шанс заявить о своей жизнеспособности. Обсудим космологические решения в новой теории. Они будут примерно такими же, как в ОТО, с той разницей, что вместо обычной гравитационной постоянной G будет фигурировать эффективная гравитационная постоянная GE. Теперь вспомним модифицированный закон Ньютона, о котором говорилось выше. Там появляется своя эффективная гравитационная постоянная, отличная от G, обозначим ее GI. Сделаны оценки для разницы: |GI — GE | ≤ 0,1.

Нет запрета на то, что в будущем будет определена значимая величина для этой разницы, но так же возможно, что она будет исключена.

На основе ОТО разработана хорошо согласованная с наблюдениями теория космологических возмущений. Она позволяет, например, объяснить структуру, то есть распределение галактик и их скоплений в доступной наблюдениям области Вселенной. Тем не менее, если при повышении точности наблюдений будет обнаружена, скажем, анизотропия, не предсказанная ОТО, то это повод обратиться к теории Хоржавы. Теория Хоржавы настолько молода, что вряд ли ее саму и выводы, сделанные на ее основе, можно считать устоявшимися и всеми признанными. Несмотря на это, как теория в целом, так и выводы, представляются очень интригующими и важными.

Многомерные модели

Привет, Многомерие!
Виктор Бохинюк

На протяжении всего последнего столетия различные теории гравитации конструировались, так или иначе, как самостоятельные теории, т. е. «снизу». В последние десятилетия ситуация изменилась: построение теорий гравитации стимулируется развитием фундаментальных теорий, различные модели гравитации являются их частью и «выкристаллизовываются» в границах этих теорий. То есть их создание идет «сверху». Будучи претендентами на «теории всего», фундаментальные теории включают и гравитацию.

«Теория всего» должна работать при самых фантастических условиях, в том числе при планковских энергиях. Тогда все взаимодействия выступают как единое. Поэтому построение таких теорий в определенной степени — экстраполяция. А переход от теории, работающей при самых общих условиях, к условиям нашего мира будет ее приближением, которое называется низкоэнергетическим. Как минимум, наблюдательные эффекты в «приближеннойтеории всего» должны иметь место в наблюдаемом нами мире. «Гравитационная часть теории всего» в низкоэнергетическом пределе приобретает привычный для нас вид, и она должна выдержать все тесты, которые выдержала ОТО. Заметим, что некоторые варианты «теории всего» в низкоэнергетическом пределе в качестве гравитационной части содержат ОТО в точности.

Важное свойство фундаментальных теорий заключается в том, что, как правило, как на космологических масштабах, так и на масштабах микромира используется размерность пространства-времени больше, чем 4. Концепция многомерного пространства необходима, например, для теории суперструн, которая, по общему признанию, представляет собой наиболее перспективную теорию высоких энергий, объединяющую квантовую гравитацию и теорию так называемых калибровочных полей. Низкоэнергетические следствия этой теории требуют, например, (9+1)-мерного фундаментального пространства-времени (иногда (10+1)-мерного), в то время как другие размерности запрещены.

Но как же тогда быть, мы же ощущаем только 3 пространственных и одно временное измерение? На микромасштабах дополнительные измерения компактифицированы (как бы свернуты в «трубочки»), и это причина, по которой они и не должны восприниматься нами. Такое пространство обладает симметриями по дополнительным измерениям, которым отвечают законы сохранения для различных зарядов, точно так же, как симметриям пространства Минковского отвечают законы сохранения для энергетических характеристик.

Уже на современном уровне технологий для подтверждения фундаментальных теорий могут оказаться важными эксперименты на ускорителях. Например, если на Большом адронном коллайдере в ЦЕРНе будут открыты так называемые суперсимметричные партнеры известных частиц — это будет означать, что идея суперсимметрии работает, а значит и более продвинутая теория гравитации, действительно, может быть построена в рамках теории струн.

Но может ли мир иметь протяженные (некомпактифицированные) измерения? Первые утверждения по этому поводу были сделаны в 1983 году Валерием Рубаковым и Михаилом Шапошниковым, продолжающими активно работать в этой области. Они показали, что в 5-мерном пространстве-времени (с 4-мерным пространством) вся материя может быть сосредоточена только на 3-мерном пространственном сечении. Возникает понятие моделей с бранами, где мир, в котором мы живем, эффективно сосредоточен в 3-мерном пространстве, и поэтому мы не чувствуем дополнительных протяженных пространственных измерений.

Некоторое время модели типа Рубакова-Шапошникова не привлекали большого внимания. Интерес к ним стал стимулироваться, в первую очередь, проблемой иерархии взаимодействий, к которой относится и чрезвычайная слабость гравитационного взаимодействия. Описывая взаимодействие элементарных частиц, о гравитационном взаимодействии можно забыть, как о совершенно несущественной поправке. Но если уж мы взялись объяснять устройство нашего мира, то должны ответить и на вопрос, почему гравитация так слаба.

Оказалось, что многомерные модели с протяженными дополнительными измерениями могут быть очень полезны для решения этих проблем. Таких моделей существует много. Пожалуй, самой известной является модель, предложенная в 1999 году американскими космологами Лизой Рэндолл и Раманом Сундрумом. На самом деле они предложили одну за другой две модели.

В первой из них 5-мерный мир с двух сторон ограничен двумя 4-мерными постранственно-временными сечениям, одно из которых — наша Вселенная (три пространственных измерения плюс одна временная координата). Пространство между двумя бранами сильно искривлено вследствие их «механического» напряжения. Это напряжение приводит к тому, что все физические частицы и поля сосредоточены только на одной из бран и не покидают ее, за исключением гравитационного взаимодействия и излучения. Гравитация на этой бране есть, но очень слаба, и это тот мир, в котором мы живем. На другой же границе 5-мерного мира, недоступной нам, гравитация, наоборот, очень сильна, а вся материя значительно легче и взаимодействия между частицами материи слабее.

Во втором варианте модели Рэндолл и Сундрума обходятся без второй границы. Эту модель теоретики любят больше. Она позволяет превратить любимую ими теорию струн в пятимерном пространстве-времени в обычную квантовую теорию на его четырехмерной границе. Пространство в этой модели также сильно искривлено, и его радиус кривизны определяет характерный размер дополнительного пятого пространственного измерения. Окончательно признанной модели с бранами нет, они находятся в активной фазе разработок, выявляются проблемы, решаются, появляются новые, снова решаются и т. д.

На рис. 12.3 (слева) схематически представлен мир на бране, где свет (фотоны) распространяется внутри нее, но не может покинуть саму брану. На рис. 12.3 (справа) показано, что если бы наш мир был на бране, то он мог бы «плавать» в великом просторе дополнительных измерений, остающихся недоступными для нас, поскольку видимый нами свет (и никакие другие поля, кроме гравитационного) не может покинуть нашу брану. Могли бы существовать и другие миры на бранах, плывущие рядом с нами.

Рис. 12.3. Мир на бране и несколько непересекающихся бран
Рис. 12.3. Мир на бране и несколько непересекающихся бран

Еще одной идеей, ведущей к рассмотрению многомерных моделей, является так называемое AdS/CFT соответствие, которое возникает как одна из конкретных реализаций теории суперструн. Геометрически это означает следующее. Рассматривается многомерное (чаще, 5-мерное) антидеситтерово (AdS) пространство-время. Без деталей, AdS-пространство — это пространство-время постоянной отрицательной кривизны. Хотя оно и искривлено, но обладает таким же количеством симметрий, что и плоское пространство-время той же размерности, т. е. максимально симметрично. Далее, рассматривается пространственная бесконечно удаленная граница AdS-пространства, размерность которой, соответственно, на единицу меньше. Так, для 5-мерного AdS-пространства граница будет 4-мерной, то есть где-то аналогичной пространству-времени, в котором мы живем. Само же соответствие означает некую математическую связь этой границы с так называемыми конформными (масштабно инвариантными) полевыми теориями, которые могут «жить» на этой границе. Вначале это соответствие изучали только в чисто математическом плане, но около 10 лет назад осознали, что эту идею можно использовать и для изучения теории сильных взаимодействий в режиме сильной связи, где обычные методы не работают. С тех пор исследования, в которых привлекается (или изучается) AdS/CFT соответствие, только набирают обороты.

Из того, что сказано в предыдущем абзаце, для нашего рассмотрения важно, что изучается искривленное пространство-время — AdS пространство и его граница. В рабочих моделях рассматривают не идеальные AdS-пространства, а более сложные решения, которые ведут себя как AdS при асимптотическом приближении к границе. Такое пространство-время может быть решением той или иной многомерной теории гравитации. То есть идея AdS/CFT соответствия — это еще один из стимулов для развиватия многомерных теорий.

Одна из основных проблем моделей с бранами (и других многомерных моделей) — понять, насколько они близки к реальности. Опишем один из возможных тестов. Вспомним эффект квантового испарения черных дыр Хокинга. Характерное время испарения для черных дыр, которые возникают при взрывах массивных звезд, на много порядков превышает время жизни Вселенной; для сверх-массивных черных дыр оно еще больше. Но ситуация меняется в случае с 5-мерным пространством-временем Рэндолл и Сундрума. Черные дыры на нашей бране (она же наша Вселенная) должны испаряться гораздо быстрее. Оказывается, что с точки зрения 5-мерного пространства-времени черные дыры нашей Вселенной движутся с ускорением. Поэтому они должны эффективно терять энергию (испаряться в дополнение к обычному эффекту Хокинга) до тех пор, пока размеры уменьшающихся черных дыр остаются больше размера дополнительного измерения (что-то вроде трения об это измерение). Например, если бы характерный размер дополнительного измерения составлял 50 микрон, вполне измеряемые в лаборатории, то черные дыры в одну солнечную массу не смогли бы прожить больше 50 тысяч лет. Если бы такое событие произошло у нас на глазах, то мы бы увидели, как внезапно гаснут рентгеновские источники, в которых светилось вещество, падавшее на черную дыру.

Черные дыры в многомерной ОТО

Итак, шаг за шагом многомерные пространства становятся неотъемлемой частью различных физических моделей. Вместе с этим все больше внимания привлекает и обобщение ОТО на более чем четыре измерения (без других модификаций и дополнений), так как такая ОТО в некоторых вариантах сама является частью новых теорий. А это является одним из существенных стимулов для поиска и изучения возможных решений многомерной ОТО. В частности, интересными и важными являются решения для черных дыр. Почему?

1) Эти решения могут быть теоретическим базисом для анализа микроскопических черных дыр в струнных теориях, где они неизбежно возникают.
2) AdS/SFT соответствие связывает свойства D-мерных черных дыр со свойствами квантовой полевой теории на (D–1)-мерной границе, о чем мы кратко говорили выше.
3) Будущие эксперименты на коллайдерах предполагают рождение многомерных черных дыр. Их регистрация невозможна без представления об их свойствах.
4) И наконец, изучение решений классической 4-мерной ОТО начиналось с изучения черных дыр — решения Шварцшильда. Кажется естественным следовать логике исторического развития.

Интуитивно ясно, чем больше измерений, тем разнообразней будут свойства решений теории. В чем это проявляется в решениях для черных дыр? Разнообразие решений в многомерной ОТО обязано двум новым особенностям: нетривиальной динамике вращений и возможности формирования протяженных горизонтов событий. Обсудим их. В обычной ОТО с 4-мерным пространством-временем независимое вращение в 3-мерном пространстве может быть только одно. Оно определяется своей осью (или, что то же самое, плоскостью вращения, перпендикулярной к ней). В 5-мерной ОТО пространство (без времени) становится 4-мерным, но это свойство 3-мерного пространства иметь единственное независимое вращение сохраняется. А вот в 6-мерной ОТО, где пространство становится 5-мерным, возможны два независимых вращения, каждое со своей осью, и т. д. Другое новое свойство, которое имеет место для решений в размерностях больше 4-х — это появление протяженных горизонтов. Что под ними подразумевается? Это «черные струны» (одномерные) и «черные браны» разных размерностей.

Комбинация этих двух новых возможностей в разных вариациях привела к тому, что в рамках многомерной ОТО построена масса решений типа черных дыр, имеющих свою сложную иерархию. На рис. 12.4 приведены некоторые из этих решений. Если в 4-мерной ОТО горизонт событий известных черных дыр, как правило, имеет сферическую форму, то в многомерии ситуация существенно изменяется. Горизонты вырождаются в струны (как мы уже упомянули), могут быть в форме тора, и т. д. Следует иметь в виду, что изображения горизонтов на рис. 12.4 должны восприниматься в определенной степени символически, поскольку в реальности они представляют собой 3-мерные поверхности в 4-мерном пространстве.

Рис. 12.4. Стационарные 5-мерные черные дыры
Рис. 12.4. Стационарные 5-мерные черные дыры

Эти образования называют уже не «черными дырами», а «черными объектами». Они могут быть многосвязными, например, черная дыра, окруженная «черным тором» называется «черным сатурном». Часть из этих объектов определяется нестабильными решениями, для другой части оказывается невозможным корректно рассчитать сохраняющиеся величины, но многие не имеют таких дефектов. Однако несмотря на все разнообразие свойств (приемлемых или вызывающих сомнения) и вычурную форму некоторых объектов, их горизонты событий имеют все то же основное свойство, что и горизонт черной дыры Шварцшильда: история материального тела после его пересечения перестает быть доступной внешнему наблюдателю.

Эта картина выглядит весьма и весьма экзотично и, вроде, не имеет отношения к действительности. Но кто знает — когда-то решения для черных дыр казались далекими от реальности, а сейчас нет сомнений, что эти объекты повсеместно населяют Вселенную. Возможно, что мы живем на бране, а внешний 5-мерный мир включает что-нибудь типа «черного сатурна», и его влияние на брану будет обнаружено.

Биметрические теории и теории с массивным гравитоном

Вспомним, чтобы описать слабые гравитационные волны, мы разбивали динамическую метрику ОТО на метрику плоского пространства-времени и возмущения метрики. Оказалось, что возмущения в виде волн могут распространяться в пространстве Минковского, которое играет роль фонового. Фон может быть и искривленым, однако должен оставаться фиксированным, т. е. его метрика должна быть решением ОТО. В этой картине метрика фонового пространства-времени и метрические возмущения являются независимыми. Такое представление есть один из вариантов биметрической теории гравитации, где одна метрика известна и представляет фоновое пространствовремя, а вторая, динамическая, играет роль распространяющегося в нем гравитационного поля. В данном случае такое описание индуцировано самой ОТО.

Однако биметрические теории строятся и без ссылок на существование ОТО, а как независимые теории. Их характерные черты в том, что фоновая и динамическая метрики объединяются в эффективную метрику, которая в свою очередь определяет эффективное пространство-время, где распространяются и взаимодействуют все физические поля. Как правило, в пределе слабого поля и малых скоростей предсказания ОТО и биметрических теорий совпадают, и они удовлетворяют всем или большинству тестов, которым соответствует и ОТО. Из-за чего уделяется внимание биметрическим теориям? Их устройство, например, позволяет более просто и непротиворечиво определять сохраняющиеся величины. Также они имеют преимущества при квантовании.

Обычно для биметрических теорий существует хотя бы принципиальная возможность определить «подстилку» — фоновое пространство-время. Но такого может и не случиться. Например, без ссылок на слабость поля (то есть точно, без приближений) ОТО можно переформулировать как биметрическую теорию. В этом случае принципиально невозможно придумать эксперимент или тест, чтобы определить фоновое пространство-время, которое поэтому играет роль вспомогательного. А реальным и доступным для наблюдений является лишь эффективное пространство-время — оно же, собственно, пространство-время ОТО.

Такое биметрическое представление ОТО называется ее теоретико-полевой формулировкой, в том смысле, что гравитационное поле рассматривается на равных правах со всеми остальными физическими полями во вспомогательном (поскольку ненаблюдаемом) фоновом пространстве-времени.

Теперь вернемся к старшим классам школы и вспомним, что в учебниках по физике говорится о так называемом корпускулярно-волновом дуализме. Что это значит? Оказывается, распространение того или иного поля можно рассматривать в зависимости от условий либо как частицу, либо как волну. Снова обратимся к электродинамике. Низкочастотный сигнал с достаточной амплитудой будет зафиксирован, скорее, как волна с помощью колебаний зарядов в ее поле. С другой стороны, высокочастотный, но слабый сигнал, скорее, будет зафиксирован как частица, которая выбивает электрон в фотодетекторе. Частица фотон — безмассовая (с нулевой массой покоя). Обратимся к другой известной частице — электрону, он имеет массу. Но оказывается, электрону тоже можно сопоставить волну, несмотря на его «массивность».

После этого вспомним о гравитационных волнах, которые предсказаны ОТО. В рамках ОТО этим волнам соответствуют частицы с нулевой массой покоя — гравитоны. А можно ли построить такую теорию гравитации, в которой гравитон имеет ненулевую массу покоя? Почему нет, если такая теория в слабополевом пределе и пределе малых скоростей будет совпадать с ОТО и удовлетворять ее тестам. История этих теорий начинается с массивной гравитации, предложенной швейцарскими теоретиками Маркусом Фирцем (1912–2006) и Вольфгангом Паули в 1939 году.

С тех пор варианты таких теорий появляются более или менее регулярно. В последнее время интерес к ним повысился в связи с тем, что варианты массивной теории гравитации возникают в фундаментальных теориях, таких как теория суперструн. В некоторых моделях с бранами более предпочтительным оказывается именно массивный гравитон. Массивные теории гравитации являются в определенном смысле разновидностью биметрических теорий: их общая черта состоит в том, что динамическое тензорное поле распространяется в фиксированном пространстве-времени, которое, как правило, принципиально наблюдаемо. Обычно в пределе, при стремления массы гравитона к нулю, такие теории переходят в ОТО. Если в пределе слабого поля и малых скоростей они совпадают с ОТО, то в сильных полях и на космологических масштабах расходятся с ОТО, предлагая другие эффекты. Например, может оказаться, что вместо решений для черных дыр появятся решения для сингулярностей без горизонтов («голых сингулярностей»), вместо расширяющейся вселенной появляются осциллирующие вселенные.

Проверить достоверность этих предсказаний напрямую пока невозможно, это остается предметом дальнейших исследований. До сих пор теории массивной гравитации имели общий изъян, их решения дают некие состояния с отрицательной энергией. Эти состояния называются «духами», объяснить их в рамках разумных представлений не получается, и поэтому они нежелательны. Однако буквально в последнее время появились варианты массивной гравитации без «духов».

Закон Ньютона

Закон всемирного тяготения после
обсуждения в третьем чтении был
отправлен на доработку...
Фольклор

Проверка закона Ньютона. Осмысление закона Ньютона до сих пор играет очень важную роль для осмысления представлений о гравитации вообще. Как можно проверить в лабораторных условиях, живем ли мы на бране (или каком другом многомерном мире), хотя и не можем «выйти» в дополнительное измерение? Вспомним, что гравитация, в отличие от остальных взаимодействий, распространяется во всех пяти измерениях. Чтобы использовать этот факт, озадачимся геометрическим смыслом закона Ньютона. Как мы помним, он утверждает, что сила гравитационного взаимодействия падает обратно пропорционально квадрату расстояния ~ 1/r2. Теперь вспомним картинку из школьного учебника физики, где действие силы описывается силовыми линиями. На такой картинке сила на данном расстоянии r определяется плотностью силовых линий, «прошивающих» сферу радиуса r: чем больше площадь сферы, тем меньше плотность линий и, соответственно, сила. А площадь сферы пропорциональна r2, откуда прямо следует зависимость от расстояния в законе Ньютона. Но это в 3-мерном пространстве, где площадь сферы пропорциональна r2! В 4-мерном пространстве площадь окружающей сферы будет пропорциональна r3, и, соответственно, изменится закон Ньютона — сила гравитационного взаимодействия будет падать обратно пропорционально кубу расстояния ~ 1/r3, и т. д.

Если бы закон обратных кубов имел место на масштабах Солнечной системы, то ясно, что именно он был бы сформулирован Ньютоном. Значит нужно его искать на малых масштабах. Вместе с тем, проверка закона Ньютона важна и для некоторых перспективных многомерных теорий, где дополнительные размерности компактификацированы (свернуты) и их размеры, конечно, меньше планетарных. Тем не менее, они могут достигать десятков микрометров. Когда Рэндолл и Сундрум только предложили свою теорию, закон Ньютона был проверен лишь до масштабов в метры. С тех пор ученые сделали несколько сложнейших (ввиду слабости гравитации) экспериментов с крутильными весами крохотных размеров, и сейчас лабораторные ограничения существенно снизились и приближаются к размерам компактификации.

Рис. 12.5. Крутильные весы для проверки закона обратных квадратов
Рис. 12.5. Крутильные весы для проверки закона обратных квадратов

Современными измерениями установлено, что размер дополнительного измерения составляет не более 50 микрон. На меньших масштабах закон обратных квадратов может нарушиться. На рис. 12.5 представлена схема крутильных весов для проверки закона обратных квадратов Ньютона. Сам прибор помещен в вакуумную колбу, тщательно изолирован от шумов и снабжен современной электронной системой детектирования смещений.

Ясно, что подобного рода эксперименты сопряжены с колоссальными технологическими трудностями, и дальнейший прогресс связывают с вынесением эксперимента в космос. Дело в том, что малые коррекции закона Ньютона ведут также к расчетному смещению планетных перигелиев (наряду с эйнштейновским). Лазерная локация Луны подтвердила эйнштейновское смещение с точностью до 10–11 радиана в столетие. А вот уже в следующем порядке может проявить себя эффект некоторых многомерных моделей.

Первые попытки такой локации проводились в начале 60-х, как американскими, так и советскими исследователями. Но лазерный луч сильно рассеивался поверхностью, и точность измерений была невысока — до нескольких сот метров. Ситуация сильно изменилась после того как в рамках американских миссий «Аполлон» и советских «Луна» на Луну были доставлены уголковые отражатели, которые и используются до сих пор (к сожалению, советская программа по Луне была свернута в 1983 году).

Как это происходит? Лазер посылает сигнал через телескоп, направленный на отражатель, при этом точно фиксируется время, когда сигнал был излучен. Площадь пучка от сигнала на поверхности Луны составляет 25 км2 (площадь уголковых отражателей около 1 м2). Отраженный от прибора на Луне свет в течение примерно одной секунды возвращается в телескоп, далее происходит от порядка 30 пикосекунд. Время путешествия фотона позволяет определить расстояние, и это сейчас делается с точностью около двух сантиметров, иногда точность до стигает нескольких миллиметров. И это при расстоянии между Землей и Луной 384 500 км!

Модифицированная ньютонова динамика (МОНД). Но закон Ньютона может нарушаться на масштабах существенно больше планетных систем. Аномальные движения и вращения в звездных системах «спровоцировали» поиски «темной материи», в которую погружены галактики, скопления галактик и т. д.

А что если сам закон Ньютона нарушен на этих масштабах? Оригинальная теория МОНД была разработана израильским физиком Мордехаем Милгромом в 1983 году как альтернатива «темной материи». Отклонения от ньютоновского закона обратных квадратов по этой теории должны наблюдаться при определенном ускорении, а не на определенном расстоянии (вспомните теорию Хоржавы, где закон Ньютона изменяется из-за влияния скоростей).

МОНД успешно объясняет наблюдаемые движения в галактиках. Эта теория также показывает, почему отклонения от ожидаемого характера вращения наиболее велики в карликовых галактиках.

Недостатки исходной теории:

1) не включает релятивистских эффектов типа СТО или ОТО;
2) нарушаются законы сохранения энергии, импульса и момента импульса;
3) внутренне противоречива, так как предсказывает различные галактические орбиты для газа и звезд;
4) не дает возможности вычислить гравитационное линзирование скоплениями галактик.

Все это вызвало ее дальнейшее существенное совершенствование — с включением скалярных полей, приведения к релятивистскому виду и т. д. Каждое изменение, снимая одно возражение, вызывало другое, завершенной теории пока нет, но исследователи не теряют оптимизма.

Аномалия «Пионеров». Автоматические межпланетные станции «Пионер-10» и «Пионер-11» были запущены в 1972 и 1973 годах для исследования Юпитера и Сатурна. Они вполне справились со своей миссией сблизиться с этими планетами и передать данные о них, что называется, из первых рук. Последний сигнал от «Пионера-10» был получен в начале 2003 года после более чем тридцати лет непрерывной работы. В тот момент космический аппарат находился уже в 12 млрд километров от Солнца. На рис. 12.6 представлена фотография аппарата «Пионер-10».

Удивление вызвал тот факт, что как только «Пионеры» миновали орбиту Урана (примерно в 1980 году), на Земле стали замечать, что частота радиосигналов, посланных аппаратами, смещается в коротковолновую часть спектра, чего быть не должно, если их движение соответствует динамике Ньютона (влияние релятивистских эффектов ОТО на таком удалении от Солнца и планет значительно слабее).

С житейской точки зрения эффект, конечно, кажется мелочью — он в 10 млрд раз меньше, чем ускорение, которое мы испытываем со стороны гравитационного поля Земли. Но он значительно превосходит релятивистские эффекты ОТО! Наиболее банальными объяснениями загадочного явления могли бы стать, например, утечка остатков газообразного топлива из двигателей малой тяги, торможение на космической пыли, и т. д. Но эти эффекты временные, а аномалия стабильна на протяжении более чем 20-ти лет.

Некоторые ученые задались вопросом, не может ли аномалия «Пионеров» порождаться до сих пор неизвестные факторами, которые действуют лишь за пределами Солнечной системы (изменение закона Ньютона). Рассматривались даже модели с привлечением антиматерии, темного вещества и темной энергии.

Рис. 12.6. Аппарат "Пионер-10"
Рис. 12.6. Аппарат "Пионер-10"

Норвежский физик Кьелл Танген всесторонне проанализировал создавшуюся ситуацию и пришел к выводу, что ни одна из известных модификаций закона гравитации не в силах описать аномалию. Действительно, эти изменения не должны привести к изменению описания движения внешних планет Солнечной системы. Так, изменяя закон Ньютона, Танген неизбежно получал неправильные результаты для описания движения Урана и Плутона.

Загадка «Пионеров» была разрешена совсем недавно в результате 20-летней работы группы Вячеслава Турышева, выпускника ГАИШ МГУ, работающего ныне в Лаборатории реактивного движения (JPL) NASA в Пасадене. В разное время группа насчитывала от 20 до 80 сотрудников. Сравнительно недавно удалось в достаточной мере расшифровать чудом сохранившиеся дополнительные данные от «Пионеров», которые ранее были недоступны из-за архаичных форматов файлов и информационных носителей (магнитофонные ленты). Изначально анализировалось более 20 факторов, которые могли бы привести к эффекту. В распоряжении группы была хранившаяся в музее копия аппаратов-двойников — третий «Пионер», оставленный на Земле после предполетных тестов, позволивших отобрать самые качественные детали для космоса. Этот аппарат исследовался досконально.

Один за другим, по разным причинам, кандидаты на эффект отклонялись. Наконец осталась лишь одна возможная причина, которая и подверглась исследованию с пристрастием. Аппарат представляет собой параболическую антенну для связи диаметром около 3 метров, снабженную аппаратурой, помещенной в коробку несколько меньшего размера. Аппаратура работает так долго благодаря энергии атомного элемента, также помещенного в эту коробку. Как результат, коробка греется. Антенна все время ориентирована на Землю, так что коробка находится позади нее.

Группа Турышева составила компьютерную карту распределения тепла во всем аппарате. Оказалось, что обратная часть аппарата (противоположная от Земли) немного теплее, чем передняя. То есть в противоположную от Земли сторону аппарат покидают более энергичные фотоны, чем те, которые летят к Земле. Фактически работает «фотонный двигатель», который в данном случае тормозит «улет» аппаратов из Солнечной системы. Данные расчетов очень хорошо согласуются с данными наблюдаемого эффекта. Мощность этого «двигателя» сравнима с мощностью «отдачи» света фар автомобиля, которая тоже его тормозит как фотонный двигатель. Это образное сравнение привел сам Турышев.

Возникают вопросы. Почему эффект обнаружили только через 8 лет? Дело в том, что есть еще такое явление, как солнечный ветер. До тех пор, пока аппараты не достигли орбиты Урана, его влияние было превалирующим, и «аномалия» просто в нем тонула. При большем удалении эффект «аномалии» стал сильнее эффекта ветра и ее обнаружили. Почему считается, что аномальная сила направлена к Солнцу, ведь антенна ориентирована на Землю? Дело в том, что уже на удалении орбиты Урана, орбита Земли видится как кружок в небольшом угле раствора. В этом случае различить, куда смотрит антенна (на Землю, на другую точку земной орбиты, на Солнце) невозможно — это примерно одно и то же.

Подведем итог. Аномалия «Пионеров» объяснена обычными простыми явлениями и пересмотра закона Ньютона и вообще гравитационных теорий для ее объяснения не требуется.

Что даст дальнейшее повышение точности наблюдений

Точность очень часто обо-
рачивается неточностью.
Дмитрий Лихачев

Весьма важной является проверка постоянства фундаментальных констант. Для этого сравнивают разнообразные наблюдения за самыми отдаленными объектами во Вселенной с наблюдениями в Солнечной системе, а их — с результатами лабораторных экспериментов на Земле и даже с данными, полученными в геологии и палеонтологии. При анализе используются разные временные шкалы, с одной стороны, обусловленные космологической и астрофизической эволюцией, с другой — основанные на современных атомных стандартах. Кроме этого, явления, существенно зависящие от этих констант, сопоставляются для разных эпох.

Для гравитации прежде всего важна гравитационная постоянная. Ее точное значение необходимо для определения параметров той или иной альтернативной теории или даже для определения ее жизнеспособности — вспомните теорию Хоржавы. От стабильности гравитационной постоянной зависит постоянство параметров планетных орбит. Исследования в Солнечной системе подтвердили неизменность гравитационной постоянной с относительной точностью от 10–13 до 10–14 в год. И точность измерений постоянно повышается.

Насколько важен в смысле построения новой теории поиск гравитационных волн от астрономических источников? В этом смысле сама по себе регистрация гравитационных волн вряд ли сразу даст много информации. Но факт регистрации окончательно подтвердит правоту современных исследований и можно будет отвергнуть совсем уж маргинальные теории. Лишь позже, когда станет возможным анализировать детали излучения (например, поляризацию), станет возможным использовать его для выбора или модификации гравитационных теорий. Определение скорости гравитационного излучения также даст ограничения на альтернативные теории, например, с массивным гравитоном; и т. д.

Нужен ли какой-то экспериментальный прорыв для создания новой теории или выбора из уже построенных? Да, конечно, необходимы новые и более точные эмпирические данные. Но это стоит называть не прорывом, а, скорее, результатом последовательных усилий. Положение дел таково: за последние 100 лет точность измерений увеличилась на 3–4 порядка. Современные технологии обещают существенно ускорить процесс. По разным оценкам ожидается, что в ближайшие 25–30 лет точность увеличится еще на 3–5 порядков. А это по многим прогнозам дает полные основания (и мы попытались это показать), если не в ближайшие годы, то в ближайшие 10–20 лет, ожидать потрясающе интересных и важных открытий. Кроме того, большинство исследователей считает, что такого повышения точности будет достаточно, чтобы определиться с новой теорией.


4
Показать комментарии (4)
Свернуть комментарии (4)

  • SysAdam  | 09.09.2013 | 07:31 Ответить
    "Oh gravity, thou art a heartless bitch."(с)The Big Bang Theory
    Ответить
  • vladimirphizik  | 10.08.2014 | 15:47 Ответить
    Доказано, что гравитация имеет электромагнитную природу http://gravitus.ucoz.ru/

    Квантовая механика теперь работает и в макро-мире, откуда, кстати, следует нумерология правила Тициус-Боде.

    Построен график для параметров орбит планет Солнечной системы, на котором видны квантово-механические атрибуты: целые числа, их четно-нечетные комбинации, квадрат целых чисел, тригонометрическая и экспоненциальная зависимости/
    Ответить
  • ValeryB  | 18.02.2016 | 00:19 Ответить
    Уважаемый Александр Николаевич,
    с интересом прочёл главу Вашей книги, посвящённую альтернативным ОТО теориям гравитации. К сожалению, не увидел анализа ВТГ ( вакуумной теории гравитации ), разработанной группой советских физиков в рамках Теории Фундаментального Поля ( Крат В.А., Герловин И.Л. ). Почему ?
    Ответить
    • kravcov.vasilii@mail.ru > ValeryB | 10.12.2016 | 00:34 Ответить
      Наверное потому, что эта Единая теория фундаментального поля (ТФП), в гносеологическом плане относительно физики таковой же значимости как теплород или эфир
      Ответить
Написать комментарий
Элементы

© 2005-2017 «Элементы»